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SENSITIVITY ANALYSIS OF THE BARBER FILTERS

Gordana Luki¢

A bstract: The sensitivity of different Barber filters is investi-
gated. It has been found that the sensitivity depends on the orders
of the filters and on the types of the applied approximations. The
sensitivity of the Barber filters does not change essentially by in-
creasing the order of the filter, as is shown in the paper.

A comparison between the sensitivity of traditional active filters of
the second order and Barber filters of the second order is presented.
Taken into consideration is the transfer function sensitivity with
respect to time constant 7 because the value of the time constant is
the most unstable quantity. The advantage of the Barber filters is
obvious in sensitivity, especially for Barber bandpass filters. Because
of their low sensitivity Barber filters are very suitable to use in
moving objects, like aeroplanes, satellites and rockets.
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1. INTRODUCTION

Continual development of performance requirements towards a preci-
sion and stability of filter characteristics motivates the need to search for new
systems and a profound analysis of existing systems where it is possible to real-
ize the prescribed requirements on a disposable elementary base.

This article deals with sensitivity of the filters the block diagram of
which was considered for the first time by N. F. Barber (Fig. 1) and published
in 1947 [1]. In his honor, they are called Barber filters.
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Fig. 1. The Barber filter

These filters were studied by Franks and Sandberg, [3], Madella [4],
Kustov and Lundin [5], Langer [6], Mohrmann und Heinlein [7], Rigby [8],
Kongelbeck and Szentirmai [9], but there have not been any studies in the last
two decades. The reason for this can be found in their complex structures if
they were realized with discrete elements. Nowadays, in view of the enormous
development of technology, the realization of the Barber filters has become
much simpler. Nevertheless, there is still a lack of basic understanding of these
filters.

The next paragraph contains the material of the Barber bandpass filters
and describe their transfer functions. Particular attention is paid to the sensitiv-
ity analysis if various approximations and filter orders are used. The third para-
graph is structured similarly like the previous paragraph, but the Barber low-
pass filters are considered. The goal of the comparison between Barber filters
and traditional active filters, derived in the fourth paragraph, is to show the dif-
ference in sensitivity. In the last paragraph the advantages of the Barber filters
are elicited.

2. BARBER BANDPASS FILTER

A. Transfer function of Barber bandpass filters

A Barber bandpass filter transfer function is presented in [2] (page 141)
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W)= [H(p- j2)+ H(p+ j)) (1)
Let
K
Hi(p) = Ha(p) = H(p)=————, @)
Ao+ 24P

/=1

where A4, 41, ... , A, are coefficients of approximation. In this case a Barber
bandpass filter transfer function will be

W(p)== ! " ! G

n N\ n ]
Ay + lzlAz (p-jQf 4o+ lzlAz (p+jQ)

With p =jw and K = 1, from Eq. (3) we obtain the network function:

W(jw)=— 1 v : @)

Ay +ZZA1[J(60—Q] Ay +ZZA1[J(60+9]
| 0

In case that  is an even natural number, from (4) follows:

1 1
W(jw)=— +
Ge) 2 n2 o 2, oo 20-1
Ao+ X (1) Apy(@0-)" +j X j Ay1(0—Q)
l=1 l=1 (5)

1

n/2 n/2
A+ Y (D y(@0-2)? + 3 2Dy (@ + Q)P

and if n is an odd natural number (4) is:
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To simplify the writing of the expressions, we have introduced the fol-
lowing substitutions:

a=0-2, pf=0+0Q,

n n—1

3 5
&=%+%&W@m”, q=@+§eanﬂ,

n n+l
2 (- _ 2 _ _
By=3 2Ny 10?7, = £ 20D g0
I=1 I=1
(7
n n-l1
2 i 21 2 i 21
By=Ay+ 2(-1) A4y p~, Ci3=d4dy+ X (-1) 4y p
/=1 1=1
n ntl

2 o _ 2 N
By= 320D 4 g2 121 D g g2
1=1 =

From (5) and (7) we obtain the magnitude and the phase of the transfer
function respectively:
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+
2 2 2 2
B +B; By +Bj
and from (6) and (7), (10) and (11) are obtained:
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Figure 2 shows the amplitude — frequency responses and Fig. 3 shows
the phase — frequency responses of the fourth-order Barber bandpass filter for
various modulating frequency values. For the inner filter transfer functions the
Butterworth approximation is used.
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Fig. 2. Amplitude — frequency response of the fourth-order Barber bandpass filters
(the Butterworth approximation)
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Fig. 3. Phase — frequency responses of the fourth-order Barber bandpass filters
(the Butterworth approximation)

The amplitude — frequency responses and the phase — frequency re-
sponses of the sixth-order Barber bandpass filter for various modulating fre-
quency values are plotted in Fig. 4 and Fig. 5. Inner filter transfer functions are
approximated by the Chebysher approximation with the ripple of 0.5 dB.
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Fig. 4. Amplitude — frequency responses of the sixth-order Barber bandpass filters
(the Chebyshev approximation with the ripple 0.5 dB)
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Fig. 5. Phase — frequency responses of the sixth-order Barber bandpass filters
(the Chebyshev approximation with the ripple 0.5 dB)

Analyzing expressions (8) and (10) and considering Fig. 2 and Fig. 4
above, the following can be concluded: the amplitude — frequency response at
w = 0 differs from zero. Increasing the modulating frequency and the filter or-
der, this value decreases. Besides, it is obvious that the passband does not de-
pend on modulation frequency Q. The limits of AFC in the passband dictate a
type of approximation and the order of filter. Stopband limits determine modu-
lation frequency Q. If a modulation frequency increases, the symmetricalness of
an AFC increases as well.

For low-frequency modulation values, undesirable sequences occur be-
cause of additional zero transmission. The influence of zero transmission de-
creases by increasing the modulation frequency Q.

The phase — frequency behavior characteristic of the Barber bandpass
filter differs from the corresponding active filter PhFC. This difference is con-
siderable for low values of modulation frequency. Besides, at the modulation
frequency, the value of Barber bandpass filter PhFC differs from zero. This dif-
ference decreases when the modulation frequency and the order of filters in-
crease.

Relation (5) at the modulation frequency can be written as follows:

IIpunosu, Onj. mat. Tex. Hayku, XXVII-XXVIIL, 1-2 (2006-2007), ctp. 67-91



74

G. Luki¢

‘W(jw)‘wzg = E

Obviously,

1

Ao

n

2 N 21
Ao+ 2(-1)" 43, (29Q)
I=1

n

2
n

2 2
Ao+ D 4y 22 | 4| $20D Ay 1 (202)2 !
=1 =1

n

2
220y
=1

n

2
n

. n
Ao+ D Ay ) | 4| 320D Ay (20)2

=1

lim [ (jo)
Q—w

2
=1

1
a):!):2AO'

From (9) at w = Q, the following is true:
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The same result can be obtained if the relations (10) and (11) are con-

sidered.

The above analysis shows that from the choice of modulation fre-
quency 2 and approximation type of inner filter transfer functions, the required

form of Barber bandpass filter frequency characteristics can be obtained.

Contributions, Sec. Math. Tech. Sci., XXVII-XXVIII, 1-2 (2006-2007), pp. 67-91



Sensitivity analysis of the Barber filters 75

B. Sensitivity of a Barber bandpass filter transfer function

For the purposes of estimating acquired realization and its comparison
with some other realizations corresponding to the same technical requirements,
it is necessary to use a notion of filter sensitivity. The classical sensitivity (or
Bode's sensitivity) is the most general estimation of an electrical network func-
tion changes F(p) with respect to the parameter variation g.

sF _dnF]_ q  d[F(p)]

16
1 d(lng)  F(p) dq (10

Generally, a computation of filter sensitivity characteristics can be
made in two steps. At the first step, the influence of instability of approxima-
tion transfer function coefficients is determined. At the second step, approxima-
tion coefficient sensitivity is determined by changes of elements realizing these
coefficients.

Figs. 6, 7, 8, 9, 10 and 11 show graphically the magnitude and the
phase sensitivity obtained as the results of the first step of the sensitivity com-
putation because the second step makes sense when a filter device operates.

A IW(io)|
Shqa

Fig. 6. Magnitude sensitivity of the fourth-order transfer function
of Barber bandpass filter with respect to an approximation coefficient 4,
(the Butterworth approximation)
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Fig. 7. Phase sensitivity of the fourth-order transfer function of Barber bandpass filter
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Fig. 8. Magnitude sensitivity of the sixth-order transfer function of Barber bandpass

filter with respect
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Fig. 9. Phase sensitivity of the sixth-order transfer function of Barber bandpass filter
with respect to an approximation coefficient 4, (the Butterworth approximation)
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Fig. 10. Magnitude sensitivity of the sixth-order transfer function of Barber bandpass
filter with respect to an approximation coefficient 4, (the Chebyshev approximation)

(0]
1,2 8‘2(2(6))
1,0 1
0,8 1
0,6 1
0,4 4
0,2

0
-0,2
0,4 ]
-0,6
-0,8
-1,0
-1,2

BN

Y B K

\} o[+1
Q=5

Fig. 11. Phase sensitivity of the sixth-order transfer function of Barber bandpass filter
with respect to an approximation coefficient 4, (the Chebyshev approximation)

Analysing the above graphs it is obvious that the magnitude and phase
sensitivity do not depend on modulation frequency Q. Increasing the Barber
filter order, the transfer function magnitude sensitivity with respect to approxi-
mation coefficients, increase in a passband. This increasing depends on the
definite coefficient and an approximation type, but it is minor.

Increasing a filter order, phase sensitivity according to changes in the
approximation coefficients does not increase considerably.
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3. BARBER LOWPASS FILTER

A. Transfer function of Barber lowpass filters

In case of the higher-order Barber lowpass filters, an influence of addi-
tional zeros is so strong that they greatly deform filter characteristics. For this
reason it does not make sense to consider Barber lowpass filters with the order
higher than two.

Barber lowpass filter transfer function is given in [2] (page 141).

Y(p)=2ij[H<p—jQ)—H<p+jQ)1 (17)

Using equation (2) and assuming n = 1, 4o = 1, 4, = T, the Barber low-
pass filter transfer function of the second order is obtained directly from (17):

K2

Y(p)= 2 = r

2 2 1 ’

1 2| PP p+—+Q?
T +— | +8Q 2
{(1’ Tj } T T

(18)

In this case a quality factor Q is

0=0.5V1+Q%T2. (19)

If k=1 and p = jw, the magnitude and the phase are respectively

Qr
Y (joo)|= ; (20)
J (1 ~0?T% + Qsz)z +40°T?
v (w) = arctg 20T . (21
\/ (- 0?12 + Q212 + 40212

Considering T = f{Q) from (19) and using frequency normalization

oy =—, (22)

Rl

magnitude and phase are given by
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The frequency responses of the amplitude and the phase of the second
order Barber lowpass filters are represented by the expressions (20), (21), (23)
and (24). In Fig. 12 and Fig. 13 their corresponding curves are presented. In
Figs. 14, 15, 16 and 17, AFC and PhFC for 7= 1 are shown.

y (o) = arctg

I¥ Gop) |
i N

Fig. 12. Amplitude — frequency responses of the second order Barber lowpass filters
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Fig. 13. Phase — frequency responses of the second order Barber lowpass filters
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Fig. 14. Amplitude — frequency responses of the second order Barber
lowpass filters for Q < 1
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Fig. 15. Amplitude — frequency responses of the second order Barber
lowpass filters for 2> 1
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Fig. 16. Phase — frequency responses of the second order Barber lowpass filters for Q < 1
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Fig. 17. Phase — frequency responses of the second order Barber lowpass filters for Q2 > 1

At the modulation frequency, (23) and (24) become respectively

. /4Q2—1
|Y(j ON )|60N 1= 16Q—2—3’ (25)

ydwNmmplz—ma4?44Q2—q. (26)

Evidently,
1
Iim |[Y(jo =—, 27
Jim [FGon),, =3 27)
Jim y@n),,y - =-90" (28)

An examination of the above expressions and graphs for 7= 1 (see Fig.
14, Fig. 15 for 2 = 1), indicates that flat characteristics are achieved. As fre-
quency increases, AFC monotonously decreases. If £2 < 1 while the modulation
frequency increases the value of transmission coefficient at the zero frequency
increases as well. For 2 > 1, as seen in Fig. 15, AFC is very deformed. As fol-
lows from Fig. 12, the value of the O-factor is determined by the required form
of AFC.

PhFC begins (see Figs. 16 and 17) from zero and decreases as the fre-
quency increases. It is linear in the passband and is asymptotically approaching
(-180°).
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B. Sensitivity of Barber lowpass filter transfer function of the second order

Using the relations (16), (19), (20), and (22) the transfer function mag-
nitude sensitivity with respect to the time constant 7" can be derived as follows:

JrGon)| _ 1-fi? [ lo3 1)
R e T s

(29)

Referring to Fig. 18, where S‘TY (o) is graphically shown (curves 1,
3,5atQ =1, Q=3 and Q = 5 respectively), it is evident that the maximum ab-

solute value of S‘TY Geox) is 1. Increasing Q-factor, S‘TY Gow) at the modulation

frequency decreases.

\ S| Y(ij)|,s| Yy GON)
T Ta

0,61
0,4
021

0,2
0,41
0,61
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1,01
1,24
1,4+
1,6
1,8
2,0

Fig. 18. Transfer function magnitude sensitivity of the second order Barber lowpass
filters and the second order active lowpass filters

The phase sensitivity of a Barber lowpass transfer function of the sec-
ond order with respect to changes of the time constant is achieved by the rela-
tions (16), (19), (21) and (22):
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[a)lz\,(4Q2 ~1)- 4Q2]Z +40%,(40% - 1)

syon) _ 20y+40% ~140? - 0% (40% ~1) -2 ‘ 30)

Frequency behavior of S%’ (@N) for various values of a Q-factor (curves
1,3,5at 0=0.6, 0=0.8 and Q = 1 respectively) is represented in Fig. 19. The

maximum absolute value of STW @N) §50.9.

| s Y NF(ON)
Ta

,8 V(on)
St

Fig. 19. Transfer function phase sensitivity of the second order Barber lowpass filters
and the second order active lowpass filters

4. COMPARISON BETWEEN BARBER FILTERS AND TRADITIONAL
ACTIVE FILTERS

It will be interesting to compare, for example, Barber bandpass filter
sensitivity of the second order with a traditional active filter of the second or-
der.

From (19) and (22) and at n = 1, 4o = 1 and 4, = T (T is a time con-
stant) in (3) magnitude and phase shift are given by:
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1+ 0%, (40% 1)
[4Q2 ~ 03, (40% - 1)]Z +40% (0% -1)
wny40% -1 -4Q2 - 0% (40% -1 -2 32

o(wy) = arctg 0 -+ a)JZV 0% 1)

W (jon)|= ; (€1))

In this case it is useful to take into consideration the transfer function
sensitivity with respect to time constant 7. The choice of this parameter can be
explained by the fact that in filters, especially variable ones, the value of the
time constant is the most unstable quantity.

It is convenient to introduce the following substitutions:

Sy =40% -1,
Sy =40% - 0y S;;
S3 = 4w} (40% - 1); (33)

Sy =1+ 0} (40% - 1);
Ss = 40” + 0% (40% - 1).
From (16), (31) and (33) the transfer function magnitude sensitivity ac-

cording to changes in the time constant of a Barber passband filter of the sec-
ond order is obtained:

2 2 2
S\TW(ij)\ _S1(Sr0 +53) ~25, |Sz(1—(01v)+2601v | (34)

S4(S3 +S3)

The transfer function magnitude sensitivity S ‘TW (o) for various val-
ues of QO-factor is shown graphically in Fig. 20 (curves 1, 3, 5at Q9=1,0=3

and Q = 5 respectively). It can be seen that S‘TW (o) has a maximum absolute

value about two (for 0 < wy < 2). At the frequency wy =1 (w = Q) S‘TI/V(ij)‘ is

approximately zero.
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Fig. 20. Transfer function magnitude sensitivity of the second order Barber bandpass
filters and the second order active bandpass filters

Similarly, from (16) and (32), considering (19), (22) and (33) the trans-
fer function phase sensitivity with respect to time constant of a Barber passband
filter of the second order is obtained:

soton) _ w5151 ~30% -85 =255 -5, -2)]

3 3 (35)
SS +wN 'SI(SZ —2)

Figure 21 shows curves of S? (@N) for various values of a Q-factor
(curves 1,3,5at O =1, Q=3 and Q = 5 respectively). The maximum absolute
value (for 0 < wy< 2) is 0,65. By increasing the O-factor, the value of S%’(QN )

at oy = 1 strives to zero.
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Fig. 21. Transfer function phase sensitivity of the second order Barber bandpass filters
and the second order active bandpass filters

As is well known, an active filter transfer function of the second order is

Wre(p)=—— F——. (36)
p+—p+ag
0

or
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Wire(p)=————— 37
P+ P+
04Ty T3

where k= 1.

For comparison purposes the following relationships may be deduced:

1 1

— =1 Q? (38)
2 2 >
T2 T
T L2+_Q2
\r
Oy=0=——". (39)

2

Using the relations (16), (22), (37), (38), and (39), the transfer function
magnitude and phase sensitivity of the active filter of the second order referring
to changes in the time constant 7, are obtained respectively:

JFreGow)| _ 160" —wy (40 - 1)’ (40)
H [40? - 02, (40% - D] + 402 (407 -1)
Jcon) __20w407 1[0} 407 1) + 402 )

T4 [4Q2 — w3, (407 - 1)]2 +40% (40% -1) '

Wre(oy)
Ty

4and 6 at Q=1, Q=3 and Q = 5 respectively).

Frequency behavior of S is represented in Fig. 21 (curves 2,

In Fig. 21 the graphs of S;{’fC(mN ) are shown (curves 2, 4 and 6 at
0O =1, 0=3and Q= 5 respectively).

An examination of expressions (34), (35), (40), (41) and their compari-
son with the corresponding graphs show that Barber filters are more stable, es-
pecially in passband. For example, at O = 5 (see Fig. 20), the maximum abso-

]CON)‘ and S‘;ZRC(]CON)‘

lute values of S‘TW ( in the passband are respectively:
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‘STWU‘"N) =0.5,

Wre(Gon)|| _
STA =5

The maximum absolute values of S? @N) and S?jC(O)N ) (see Fig. 21)

at O =5 in the passband are respectively:

[spe)| =056,

[sgrcten)] 1o,

Similarly, a comparison between the second order Barber lowpass filter
and the second order active lowpass filter that corresponds to the same per-
formance requirements will be made. For the purpose of the transfer function of
the second order active lowpass filter will be used as follows:

2
K@
Yne(p)= o : (42)
PP+ pra}
04

Assuming (22), (38) and (39) for x = 1, the magnitude and the phase
sensitivity with respect to the time constant 7, of the second order active low-
pass filter is obtained:

S\YNF(Q,N)\ ZwN(4Q2 )[4Q2 2- a),%(4Q2—1)]

(43)
T [4Q2 0 (402 - 1)] +40% (402 - 1

Ty

[4Q — 0% (40 —1)]2+4a)N(4Q —1)

Figure 18 graphically presents the magnitude sensitivity with respect to
the time constant 7, (the curves 2,4, 6 at 0=0.6, 0=0.8, 0=1).
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The frequency behavior of S;; NF(ON) i shown in F ig. 19 (curves 2, 4,
6at 0=0.6, 0=0.8 and Q = 1 respectively).

From the expressions (29), (30), (43), (44) and Fig. 18 and Fig. 19 it
can be seen that the active lowpass filter is less stable than the corresponding

Barber lowpass filter. Increasing the Q-factor, sive Gy

T increases in the
A

passband.

The maximum values of S;‘f; NE(ON) apd S;U (@¥) in the passband are

respectively:

YNr(oN) _
STANF N) =9,

SENF(ON) Z 0.9

It is obvious that for low values of the Q-factor, it is not possible to ob-
tain a great advantage with respect to the stability characteristics in the pass-
band of the second order Barber lowpass filter.

Experimentally and theoretically obtained results were in good accor-
dance in bread range of changes O, w, T and Q.

5. CONCLUSION

The Barber filters described in this paper have a low sensitivity. That is
a basic condition for use of them in measurements in moving objects, for ex-
ample, in aeroplanes, in satellites, in rockets etc. Applications of these filters
make possible the creation of filter systems containing many channels with
identical AFC and PhFC which have a high stability and can be simply con-
trolled by changing the modulation function. That insures highly effective fil-
tering. As can be seen from the presented material, their most appropriate func-
tion is to use them as bandpass filters. At the same time the Barber filters repre-
sent examples of how systems of high selectivity with lower Q circuitry can be
obtained.
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Pesume

AHAJMN3A HA YYBCTBUTE/IHOCTA HA BAPBEPOBUTE ONITPU

M3yueHna e uyBcTBUTENHOCTA HA BapbeposuTe (huaTpu KOM BO JUTEpaTyparta ce
CpeKaBaar ¥ TOJ] IPYrW Ha3WBHU (Ha Ip. KBalpaTypHU, CHHXPOHHU, MONTYJIAIIMOHH, TTapame-
TpucKH uTH.). HajmeHo e Aeka 4yBCTBHTENHOCTA Ha (DUITPHUTE 3aBHCH Off HUBHUOT pef
KakKo M Of] TUIOT Ha IPUMEHETUTE anmpokcuManuu. MefyToa, Kako IITO € IMOKaXaHO BO
TPYAOT, YyBCTBUTEIHOCTA HE 3aBUCH NO3HAYUTEIHO Of] pElOT Ha (PUITEPOT.

HanpaBeHa e cmopen0a Ha YyBCTBUTENHOCTA HA TPAJUIUOHATHUTE AKTUBHU
¢untpu o BTOp pen u bapbeposute unTpu o BTOp pef. 3eMeHa € MpeiBuj] YyBCTBU-
TEJTHOCTa Ha MpeHOCHaTa (PyHKIHja BO OJHOC HA BPEeMEHCKaTa KOHCTaHTa T 3aToa IITO
BpEeHOCTa Ha OBaa KOHCTaHTa € HajHeCTaOUIIHA BeJININHA.

IIpennocra Ha BapGepoBuTe (UIATPU BO OHOC HA YYBCTBUTEIHOCTA € OUUIJIIC]-
Ha, ocobeHo kKaj bap6eposute nojacuu ¢untpu. [Tlopagn HUBHATA Maja YyBCTBUTEIHOCT,
Bap6epoBute (GUITPH ce MOIIHE KOPHUCHHU 32 Meperha BO OOjeKTH BO JBHMKEH¢ (aBUOHH,
CaTeNNTH, PAKETH U CIIUIHO).
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Knyynn 360poBm: aHanu3a Ha yyBcTBUTENHOCT; bap6epoBu duntpy; pyHKuuja
Ha MpeHOC; anpokcuManyy; ppekBeHnrja Ha Mopyianuja; bap6epoBu nojacuu untpu;
Bapb6epoB HmckomojaceH (miITep; aKTUBEH MojaceH (PUiITep; aKTHBEH HUCKOIOjaceH
¢untep; pakTop Ha KBaTUTET Q; cnopenda
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