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SENSITIVITY ANALYSIS OF THE BARBER FILTERS 

Gordana Lukić 

A b s t r a c t: The sensitivity of different Barber filters is investi-
gated. It has been found that the sensitivity depends on the orders 
of the filters and on the types of the applied approximations. The 
sensitivity of the Barber filters does not change essentially by in-
creasing the order of the filter, as is shown in the paper.  

A comparison between the sensitivity of traditional active filters of 
the second order and Barber filters of the second order is presented. 
Taken into consideration is the transfer function sensitivity with 
respect to time constant T because the value of the time constant is 
the most unstable quantity. The advantage of the Barber filters is 
obvious in sensitivity, especially for Barber bandpass filters. Because 
of their low sensitivity Barber filters are very suitable to use in 
moving objects, like aeroplanes, satellites and rockets. 
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1. INTRODUCTION 

Continual development of performance requirements towards a preci-
sion and stability of filter characteristics motivates the need to search for new 
systems and a profound analysis of existing systems where it is possible to real-
ize the prescribed requirements on a disposable elementary base. 

This article deals with sensitivity of the filters the block diagram of 
which was considered for the first time by N. F. Barber (Fig. 1) and published 
in 1947 [1]. In his honor, they are called Barber filters. 
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Fig. 1.  The Barber filter 

These filters were studied by Franks and Sandberg, [3], Madella [4], 
Kustov and Lundin [5], Langer [6], Möhrmann und Heinlein [7], Rigby [8], 
Kongelbeck and Szentirmai [9], but there have not been any studies in the last 
two decades. The reason for this can be found in their complex structures if 
they were realized with discrete elements. Nowadays, in view of the enormous 
development of technology, the realization of the Barber filters has become 
much simpler. Nevertheless, there is still a lack of basic understanding of these 
filters. 

The next paragraph contains the material of the Barber bandpass filters 
and describe their transfer functions. Particular attention is paid to the sensitiv-
ity analysis if various approximations and filter orders are used. The third para-
graph is structured similarly like the previous paragraph, but the Barber low-
pass filters are considered. The goal of the comparison between Barber filters 
and traditional active filters, derived in the fourth paragraph, is to show the dif-
ference in sensitivity. In the last paragraph the advantages of the Barber filters 
are elicited. 

2. BARBER BANDPASS FILTER 

A. Transfer function of Barber bandpass filters 

A Barber bandpass filter transfer function is presented in [2] (page 141) 



 Sensitivity analysis of the Barber filters 69 

Prilozi, Odd. mat. teh. nauki, XXVII–XXVIII, 1‡2 (2006‡2007), str. 67‡91 

 [ ].)()(
2
1)( jΩpHjΩpHpW ++−=  (1) 

Let 

 ,)()()(

1
0

21
∑+

Κ
===

=

n

l

l
l pAA

pHpHpH  (2) 

where A0, A1, … , An are coefficients of approximation. In this case a Barber 
bandpass filter transfer function will be 
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With p = jω and Κ = 1, from Eq. (3) we obtain the network function: 
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In case that n is an even natural number, from (4) follows: 
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and if n is an odd natural number (4) is: 
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 To simplify the writing of the expressions, we have introduced the fol-
lowing substitutions: 
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From (5) and (7) we obtain the magnitude and the phase of the transfer 
function respectively: 
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and from (6) and (7), (10) and (11) are obtained: 
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Figure 2 shows the amplitude – frequency responses and Fig. 3 shows 
the phase – frequency responses of the fourth-order Barber bandpass filter for 
various modulating frequency values. For the inner filter transfer functions the 
Butterworth approximation is used. 

 
Fig. 2.  Amplitude – frequency response of the fourth-order Barber bandpass filters  

(the Butterworth approximation)  

, (dB)
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Fig. 3.  Phase – frequency responses of the fourth-order Barber bandpass filters  
(the Butterworth approximation) 

The amplitude – frequency responses and the phase – frequency re-
sponses of the sixth-order Barber bandpass filter for various modulating fre-
quency values are plotted in Fig. 4 and Fig. 5. Inner filter transfer functions are 
approximated by the Chebysher approximation with the ripple of 0.5 dB. 

 

Fig. 4.  Amplitude – frequency responses of the sixth-order Barber bandpass filters  
(the Chebyshev approximation with the ripple 0.5 dB) 
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Fig. 5.  Phase – frequency responses of the sixth-order Barber bandpass filters  
(the Chebyshev approximation with the ripple 0.5 dB) 

  Analyzing expressions (8) and (10) and considering Fig. 2 and Fig. 4 
above, the following can be concluded: the amplitude – frequency response at 
ω = 0 differs from zero. Increasing the modulating frequency and the filter or-
der, this value decreases. Besides, it is obvious that the passband does not de-
pend on modulation frequency Ω. The limits of AFC in the passband dictate a 
type of approximation and the order of filter. Stopband limits determine modu-
lation frequency Ω. If a modulation frequency increases, the symmetricalness of 
an AFC increases as well. 

 For low-frequency modulation values, undesirable sequences occur be-
cause of additional zero transmission. The influence of zero transmission de-
creases by increasing the modulation frequency Ω. 

 The phase – frequency behavior characteristic of the Barber bandpass 
filter differs from the corresponding active filter PhFC. This difference is con-
siderable for low values of modulation frequency. Besides, at the modulation 
frequency, the value of Barber bandpass filter PhFC differs from zero. This dif-
ference decreases when the modulation frequency and the order of filters in-
crease. 

Relation (5) at the modulation frequency can be written as follows: 
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 The same result can be obtained if the relations (10) and (11) are con-
sidered. 

 The above analysis shows that from the choice of modulation fre-
quency Ω and approximation type of inner filter transfer functions, the required 
form of Barber bandpass filter frequency characteristics can be obtained. 
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B. Sensitivity of a Barber bandpass filter transfer function 

For the purposes of estimating acquired realization and its comparison 
with some other realizations corresponding to the same technical requirements, 
it is necessary to use a notion of filter sensitivity. The classical sensitivity (or 
Bode's sensitivity) is the most general estimation of an electrical network func-
tion changes F(p) with respect to the parameter variation q. 

 [ ] [ ].)(
)()(ln

)(ln)(
dq

pFd
pF

q
qd
pFdS pF

q ⋅==  (16) 

 Generally, a computation of filter sensitivity characteristics can be 
made in two steps. At the first step, the influence of instability of approxima-
tion transfer function coefficients is determined. At the second step, approxima-
tion coefficient sensitivity is determined by changes of elements realizing these 
coefficients. 

Figs. 6, 7, 8, 9, 10 and 11 show graphically the magnitude and the 
phase sensitivity obtained as the results of the first step of the sensitivity com-
putation because the second step makes sense when a filter device operates. 

 
Fig. 6.  Magnitude sensitivity of the fourth-order transfer function  

of Barber bandpass filter with respect to an approximation coefficient A1 
(the Butterworth approximation) 
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Fig. 7.  Phase sensitivity of the fourth-order transfer function of Barber bandpass filter 

with respect to an approximation coefficient A1 (the Butterworth approximation) 

 
Fig. 8.  Magnitude sensitivity of the sixth-order transfer function of Barber bandpass 

filter with respect to an approximation coefficient A1 (the Butterworth approximation) 

 
Fig. 9.  Phase sensitivity of the sixth-order transfer function of Barber bandpass filter 

with respect to an approximation coefficient A1 (the Butterworth approximation) 
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Fig. 10.  Magnitude sensitivity of the sixth-order transfer function of Barber bandpass 
filter with respect to an approximation coefficient A2 (the Chebyshev approximation) 

 
Fig. 11.  Phase sensitivity of the sixth-order transfer function of Barber bandpass filter 

with respect to an approximation coefficient A2 (the Chebyshev approximation) 

 Analysing the above graphs it is obvious that the magnitude and phase 
sensitivity do not depend on modulation frequency Ω. Increasing the Barber 
filter order, the transfer function magnitude sensitivity with respect to approxi-
mation coefficients, increase in a passband. This increasing depends on the 
definite coefficient and an approximation type, but it is minor. 

 Increasing a filter order, phase sensitivity according to changes in the 
approximation coefficients does not increase considerably. 
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3. BARBER LOWPASS FILTER 

A. Transfer function of Barber lowpass filters 

In case of the higher-order Barber lowpass filters, an influence of addi-
tional zeros is so strong that they greatly deform filter characteristics. For this 
reason it does not make sense to consider Barber lowpass filters with the order 
higher than two. 

Barber lowpass filter transfer function is given in [2] (page 141). 
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Using equation (2) and assuming n = 1, A0 = 1, A1 = T, the Barber low-
pass filter transfer function of the second order is obtained directly from (17): 
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 In this case a quality factor Q is 

 .15.0 22TΩQ +=  (19) 

If κ = 1 and p = jω, the magnitude and the phase are respectively 
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 Considering T = f(Q) from (19) and using frequency normalization 
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magnitude and phase are given by 
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The frequency responses of the amplitude and the phase of the second 
order Barber lowpass filters are represented by the expressions (20), (21), (23) 
and (24). In Fig. 12 and Fig. 13 their corresponding curves are presented. In 
Figs. 14, 15, 16 and 17, AFC and PhFC for T = 1 are shown. 

 
Fig. 12. Amplitude – frequency responses of the second order Barber lowpass filters 

 
Fig. 13. Phase – frequency responses of the second order Barber lowpass filters 
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Fig. 14.  Amplitude – frequency responses of the second order Barber  

lowpass filters for Ω < 1 

 
Fig. 15.  Amplitude – frequency responses of the second order Barber  

lowpass filters for Ω ≥ 1 

 
Fig. 16.  Phase – frequency responses of the second order Barber lowpass filters for Ω < 1 
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Fig. 17.  Phase – frequency responses of the second order Barber lowpass filters for Ω ≥ 1 

 At the modulation frequency, (23) and (24) become respectively 
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 An examination of the above expressions and graphs for T = 1 (see Fig. 
14, Fig. 15 for Ω = 1), indicates that flat characteristics are achieved. As fre-
quency increases, AFC monotonously decreases. If Ω ≤ 1 while the modulation 
frequency increases the value of transmission coefficient at the zero frequency 
increases as well. For Ω > 1, as seen in Fig. 15, AFC is very deformed. As fol-
lows from Fig. 12, the value of the Q-factor is determined by the required form 
of AFC. 

 PhFC begins (see Figs. 16 and 17) from zero and decreases as the fre-
quency increases. It is linear in the passband and is asymptotically approaching 
(–180°). 
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B. Sensitivity of Barber lowpass filter transfer function of the second order 

Using the relations (16), (19), (20), and (22) the transfer function mag-
nitude sensitivity with respect to the time constant T can be derived as follows: 

 ( ) ( )
[ ] .

)124(242)124(224

122
1241)(

−+−−

−−−
=

QNQNQ
nQNjΥ

TS
ωω

ωω  (29) 

Referring to Fig. 18, where )( NjΥ
TS ω  is graphically shown (curves 1, 

3, 5 at Q = 1, Q = 3 and Q = 5 respectively), it is evident that the maximum ab-

solute value of )( NjΥ
TS ω  is 1. Increasing Q-factor, )( NjΥ

TS ω  at the modulation 
frequency decreases. 

 

Fig. 18.  Transfer function magnitude sensitivity of the second order Barber lowpass 
filters and the second order active lowpass filters 

The phase sensitivity of a Barber lowpass transfer function of the sec-
ond order with respect to changes of the time constant is achieved by the rela-
tions (16), (19), (21) and (22): 
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 Frequency behavior of )( N
TS ωψ  for various values of a Q-factor (curves 

1, 3, 5 at Q = 0.6, Q = 0.8 and Q = 1 respectively) is represented in Fig. 19. The 
maximum absolute value of )( N

TS ωψ  is 0.9. 

 
Fig. 19.  Transfer function phase sensitivity of the second order Barber lowpass filters 

and the second order active lowpass filters 

4. COMPARISON BETWEEN BARBER FILTERS AND TRADITIONAL 
ACTIVE FILTERS 

 It will be interesting to compare, for example, Barber bandpass filter 
sensitivity of the second order with a traditional active filter of the second or-
der. 

 From (19) and (22) and at n = 1, A0 = 1 and A1 = T (T is a time con-
stant) in (3) magnitude and phase shift are given by: 
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 In this case it is useful to take into consideration the transfer function 
sensitivity with respect to time constant T. The choice of this parameter can be 
explained by the fact that in filters, especially variable ones, the value of the 
time constant is the most unstable quantity. 

 It is convenient to introduce the following substitutions: 
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From (16), (31) and (33) the transfer function magnitude sensitivity ac-
cording to changes in the time constant of a Barber passband filter of the sec-
ond order is obtained: 
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The transfer function magnitude sensitivity )( NjW
TS ω  for various val-

ues of Q-factor is shown graphically in Fig. 20 (curves 1, 3, 5 at Q = 1, Q = 3 

and Q = 5 respectively). It can be seen that )( NjW
TS ω  has a maximum absolute 

value about two (for 0 ≤ ωN ≤ 2). At the frequency ωN = 1 (ω = Ω) )( NjW
TS ω  is 

approximately zero. 
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Fig. 20.  Transfer function magnitude sensitivity of the second order Barber bandpass 

filters and the second order active bandpass filters 

 Similarly, from (16) and (32), considering (19), (22) and (33) the trans-
fer function phase sensitivity with respect to time constant of a Barber passband 
filter of the second order is obtained: 
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Figure 21 shows curves of )( N
TS ωϕ  for various values of a Q-factor 

(curves 1, 3, 5 at Q = 1, Q = 3 and Q = 5 respectively). The maximum absolute 
value (for 0 ≤ ωN ≤ 2) is 0,65. By increasing the Q-factor, the value of )( N

TS ωϕ  
at ωN = 1 strives to zero. 
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Fig. 21. Transfer function phase sensitivity of the second order Barber bandpass filters 

and the second order active bandpass filters 

As is well known, an active filter transfer function of the second order is 
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or 
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where κ = 1. 

 For comparison purposes the following relationships may be deduced: 
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 Using the relations (16), (22), (37), (38), and (39), the transfer function 
magnitude and phase sensitivity of the active filter of the second order referring 
to changes in the time constant TA are obtained respectively: 
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 Frequency behavior of )( NRC
A

jW
TS ω  is represented in Fig. 21 (curves 2, 

4 and 6 at Q = 1, Q = 3 and Q = 5 respectively). 

In Fig. 21 the graphs of )( NRC
ATS ωϕ  are shown (curves 2, 4 and 6 at 

Q = 1, Q = 3 and Q = 5 respectively). 

An examination of expressions (34), (35), (40), (41) and their compari-
son with the corresponding graphs show that Barber filters are more stable, es-
pecially in passband. For example, at Q = 5 (see Fig. 20), the maximum abso-

lute values of )( NjW
TS ω  and )( NRC

A

jW
TS ω  in the passband are respectively: 
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 5.0)( =NjW
TS ω , 

 5)( =NRC
A

jW
TS ω . 

The maximum absolute values of )( N
TS ωϕ  and )( NRC

ATS ωϕ  (see Fig. 21) 

at Q = 5 in the passband are respectively: 

 56.0)( =N
TS ωϕ , 

 .10)( =NRC
ATS ωϕ  

 Similarly, a comparison between the second order Barber lowpass filter 
and the second order active lowpass filter that corresponds to the same per-
formance requirements will be made. For the purpose of the transfer function of 
the second order active lowpass filter will be used as follows: 
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 Assuming (22), (38) and (39) for κ = 1, the magnitude and the phase 
sensitivity with respect to the time constant TA of the second order active low-
pass filter is obtained: 
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Figure 18 graphically presents the magnitude sensitivity with respect to 
the time constant TA (the curves 2, 4, 6 at Q = 0.6, Q = 0.8, Q = 1). 
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The frequency behavior of )( NNF
A

Ψ
TS ω  is shown in Fig. 19 (curves 2, 4, 

6 at Q = 0.6, Q = 0.8 and Q = 1 respectively). 

 From the expressions (29), (30), (43), (44) and Fig. 18 and Fig. 19 it 
can be seen that the active lowpass filter is less stable than the corresponding 

Barber lowpass filter. Increasing the Q-factor, )( NNF
A

jΥ
TS ω  increases in the 

passband. 

 The maximum values of )( NNF
A

Ψ
TS ω  and )( NΨ

TS ω  in the passband are 

respectively: 

 ,2)( =NNF
A

Ψ
TS ω  

 9.0)( =NNFΨ
TS ω . 

 It is obvious that for low values of the Q-factor, it is not possible to ob-
tain a great advantage with respect to the stability characteristics in the pass-
band of the second order Barber lowpass filter. 

 Experimentally and theoretically obtained results were in good accor-
dance in bread range of changes Q, ω, T and Ω. 

5. CONCLUSION 

The Barber filters described in this paper have a low sensitivity. That is 
a basic condition for use of them in measurements in moving objects, for ex-
ample, in aeroplanes, in satellites, in rockets etc. Applications of these filters 
make possible the creation of filter systems containing many channels with 
identical AFC and PhFC which have a high stability and can be simply con-
trolled by changing the modulation function. That insures highly effective fil-
tering. As can be seen from the presented material, their most appropriate func-
tion is to use them as bandpass filters. At the same time the Barber filters repre-
sent examples of how systems of high selectivity with lower Q circuitry can be 
obtained. 
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R e z i m e 
 

ANALIZA NA ^UVSTVITELNOSTA NA BARBEROVITE FILTRI 

Izu~ena e ~uvstvitelnosta na Barberovite filtri koi vo literaturata se 
sre}avaat i pod drugi nazivi (na pr. kvadraturni, sinhroni, modulacioni, parame-
triski itn.). Najdeno e deka ~uvstvitelnosta na filtrite zavisi od nivniot red 
kako i od tipot na primenetite aproksimacii. Me|utoa, kako {to e poka`ano vo 
trudot, ~uvstvitelnosta ne zavisi pozna~itelno od redot na filterot. 

Napravena e sporedba na ~uvstvitelnosta na tradicionalnite aktivni 
filtri od vtor red i Barberovite filtri od vtor red. Zemena e predvid ~uvstvi-
telnosta na prenosnata funkcija vo odnos na vremenskata konstanta T zatoa {to 
vrednosta na ovaa konstanta e najnestabilna veli~ina. 

Prednosta na Barberovite filtri vo odnos na ~uvstvitelnosta e o~igled-
na, osobeno kaj Barberovite pojasni filtri. Poradi nivnata mala ~uvstvitelnost, 
Barberovite filtri se mo{ne korisni za merewa vo objekti vo dvi`ewe (avioni, 
sateliti, raketi i sli~no). 
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Klu~ni zborovi: analiza na ~uvstvitelnost; Barberovi filtri; funkcija 
na prenos; aproksimacii; frekvencija na  modulacija; Barberovi pojasni filtri; 
Barberov niskopojasen filter; aktiven pojasen filter; aktiven niskopojasen 
filter; faktor na kvalitet Q; sporedba 
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