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A b s t r a c t:  The subject of fractional calculus (that is, calculus 
of integrals and derivatives of any arbitrary real or complex order) 
has gained considerable popularity and importance during the past 
three decades or so, due mainly to its demonstrated applications in 
numerous seemingly diverse and widespread fields of science and 
engineering. It does indeed provide several potentially useful tools 
for solving differential and integral equations, and various other 
problems involving special functions of mathematical physics as 
well as their extensions and generalizations in one and more vari-
ables. The main object of this paper* is to present a brief elementa-
ry and introductory approach to the theory of fractional calculus 
and its applications especially in developing solutions of certain 
interesting families of ordinary and partial fractional differintegral 
equations. Relevant connections of some of the results presented 
in this lecture with those obtained in many other earlier works on 
this subject will also be indicated. 
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1. INTRODUCTION AND A BRIEF HISTORICAL SURVEY 

The concept of it fractional calculus that is, calculus of integrals and 
derivatives of any arbitrary real or complex order) seems to have stemmed from 
a question raised in the year 1695 by Marquis de l'Hôpital (1661-1704) to 
Gottfried Wilhelm Leibniz (1646-1716), which sought the meaning of Leibniz's 
(currently popular) notation  

 
n

n

dx
yd  

for the derivative of order ∈n 0 := {0,1,2,...} when 
2
1

=n  (What if 
2
1

=n ? In 

his reply, dated 30 September 1695, Leibniz wrote to l'Hôpital as follows: 

„... This is an apparent paradox from which, one day, useful conse-
quences will be drawn. ...“ 

Subsequent mention of fractional derivatives was made, in some con-
text or the other, by (for example) Euler in 1730, Lagrange in 1772, Laplace in 
1812, Lacroix in 1819, Fourier in 1822, Liouville in 1832, Riemann in 1847, 
Greer in 1859, Holmgren in 1865, Grünwald in 1867, Letnikov in 1868, 
Laurent in 1884, Nekrassov in 1888, Krug in 1890, and Weyl in 1917. In fact, 
in his 700-page textbook, entitled „Traité du Calcul Différentiel et du Calcul 
Intégral' (Second edition; Courcier, Paris, 1819), S. F. Lacroix devoted two 
pages (pp. 409-410) to fractional calculus, showing eventually that  

 
π
υυ

υ

2

2
1

2
1

=

d

d . 

In addition, of course, to the theories of differential, integral, and inte-
gro-differential equations, and special functions of mathematical physics as 
well as their extensions and generalizations in one and more variables, some of 
the areas of present-day applications of fractional calculus include 

1. Fluid Flow 
2. Rheology 
3. Dynamical Processes in Self-Similar and Porous Structures 
4. Diffusive Transport Akin to Diffusion 
5. Electrical Networks  



 An Elementary and Introductory Approach to Fractional Calculus and Its Applications 9 

Prilozi, Odd. mat. teh. nauki, XXIX, 1‡2 (2008), str. 7‡35 

6. Probability and Statistics 
7. Control Theory of Dynamical Systems 
8. Viscoelasticity 
9. Electrochemistry of Corrosion 
10. Chemical Physics 

end so on (see, for details, [11], [41], and [14]. 

The first work, devoted exclusively to the subject of fractional calculus, 
is the book by Oldham and Spanier [39]. One of the most recent works on the 
subject of fractional calculus is the book by Podlubny [41]. The latest (but cer-
tainly not the last) works on the subject of fractional calculus and its applica-
tions are the volume edited by Hilfer [11] and the monograph emphasizing 
upon the theory and applications of fractional differential equations by Kilbas 
et al. [14]. Indeed, in the meantime, numerous other works (books, edited vol-
umes, and conference proceedings) have also appeared (see, e. g., [13], [15], 
[26], [27], [28], [29], [31], [30], [43], [44], [47], [48] and [55]). And today 
there exist at least two international journals which are devoted almost entirely 
to the subject of fractional calculus: (i) Journal of Fractional Calculus and (ii) 
Fractional Calculus and Applied Analysis. 

Here, in this expository lecture, we aim at presenting an elementary and 
introductory overview of the theory of fractional calculus and of some of its 
applications. 

2. THE RIEMANN-LIOUVILLE AND WEYL OPERATORS  
OF FRACTIONAL CALCULUS 

Now we begin by defining the linear integral operators mathcal 0 and 
2  by  

 ∫= x dttfxf 0 )(:))((0  (2.1) 
and  
 ∫= ∞

x dttfxf )(:))((2 , (2.2) 

respectively. Then it is easily seen by iteration (and the principle of mathemati-
cal induction) that  

 ∫ ∈−
−

= −
x nn ndttftx

n
xf

0

1 )()()(
)!1(

1))(( 0  (2.3) 
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and 

 ∫ ∈−
−

=
∞

−

0

1 )()()(
)!1(

1))(( ndttftx
n

xf nn2  (2.4) 

where, just as elsewhere in this presentation,  

 }0{\.}..,3,2,1{: 0 == . 

With a view to interpolating (n – 1) between the positive integer values 
of n, one can set  

 )()!1( nn Γ=−  (2.5) 

in terms of the familiar Gamma function. Thus, in general, Equations (2.3) and 
(2.4) would lead us eventually to the familiar Riemann-Liouville operator 9μ 
and the Weyl operator >μ of fractional integral of order )( *∈μμ , defined by 
(cf., e.g., Erdélyi et al. [6. Chapter 13])  

 ∫ >−
Γ

= −
x

dttftxxf
0

1 )0)(()()(
)(

1:))(( μ
μ

μμ 99  (2.6) 

and  

 ∫ >ℜ−
Γ

=
∞

−

0

1 )0)(()()(
)(

1:))(( μ
μ

μμ dttfxtxf>  (2.7) 

… respectively, it being tacitly assumed that the function f (t) is so constrained 
that the integrals in (2.6) and (2.7) exist. 

In the remarkably vast literature on fractional calculus and its fairly 
widespread applications, there are potentially useful operators of fractional de-
rivatives μ

0;x+  and μ
∞;x+  of order )( ∈μμ , which correspond to the above-

defined fractional integral operators μ9  and μ> , respectively, and we have  

 ( ) ( ) )(:)(0; xf
dx
dxf m

m

m

x
μμ −= 9+  (2.8) 

 );)()1( )∈<ℜ≤− mmm μ  
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and  

 ( ) ( ) )(:)(; xf
dx
dxf m

m

m
x

μμ −
∞ = >+  (2.9) 

 );)()1( )∈<ℜ≤− mmm μ  

There also exist, in the considerably extensive literature on the theory 
and applications of fractional calculus, numerous further extensions and gener-
alizations of the operators  μ9  and μ> , μ

0;x+ , and μ
∞;x+ , each of which we 

have chosen to introduce here for the sake of the non-specialists in this subject. 

3. INITIAL-VALUE PROBLEMS BASED UPON FRACTIONAL CALCULUS 

If we define, as usual, the Laplace transform operator 3 by 

 )(:)(:}:)({
0

sFdttfestf
x

st =∫= −3 , (3.1) 

provided that the integral exists, for the Riemann-Liouville fractional derivative 
operator μ

0;t+  of order μ , we have  

 ( ){ } ( )
0

1

0

1
0;0; )()(:)(,

=

−

=

−−∑−=
t

n

k

k
t

k
t tfssFsstf μμμ ++3  (3.2) 

 );)(1( ∈<ℜ≤− nnn μ  

Such initial values as those occurring in (3.2) are usually not interpret-
able physically in a given initial-value problem. This situation is overcome at 
least partially by making use of the so-called Caputo fractional derivative 
which arose in several important works, dated 1969 onwards, by M. Caputo 
(see, for details, [41, p. 78 et seq.]; see also [14, p. 90 et seq.]). 

In many recent works, especially in the theory of viscoelasticity and in 
hereditary solid mechanics, the following (Caputo's) definition is adopted for 
the fractional derivative of order α > 0 of a causal function (t) (i.e., (t) = 0 for 
t < 0):  
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where )()( tf n  denotes the usual (ordinary) derivative of order n and Γ is the 
Gamma function occurring already in (2.4) and (2.5). One can apply the above 
notion in order to generalize some basic topics of classical mathematical phys-
ics, which are treated by simple, linear, ordinary or partial, differential equa-
tions, since [cf. Equation (3.2) and Definition (3.3)]  

 ∑ +−=
⎪⎭
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⎫

⎪⎩

⎪
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=

−−1

0
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which obviously is more suited for initial-value problems than (3.2). See, for 
details, Gorenflo et al. [9], Podlubny [41] and Kilbas et al. [14]. 

The basic processes of relaxation, diffusion, oscillations, and wave 
propagation have been generalized by several authors by introducing fractional 
derivatives in the governing (ordinary or partial) differential equations. This 
leads to superslow or intermediate processes that, in mathematical physics, we 
may refer to as fractional phenomena. Our analysis of each of these pheno-
mena, carried out by means of fractional calculus and Laplace transforms, leads 
to certain special functions in one variable of Mittag-Leffler and Fox-Wright 
types. These useful special functions are investigated systematically as relevant 
cases of the general class of functions which are popularly known as Fox's H-
function after Charles Fox (1897–1977) who initiated a detailed study of these 
functions as symmetrical Fourier kernels [see, for details, Srivastava et al. [51] 
and [52]. 

We choose to summarize below some recent investigations by Gorenflo 
et al. [9] who did indeed make references to numerous earlier closely-related 
works on this subject. 

I. The Fractional (Relaxation-Oscillation) Ordinary Differential Equation 

 0);( =+ αα
α

α
tuc

dt
ud  (3.5) 

 ( )20;0 ≤<> αc  
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Case I.1: Fractional Relaxation        )10( ≤< α  

                 Initial Condition:         0);0( uu =+ α  

Case I.2: Fractional Oscillation        )21( ≤< α   

                 Initial Conditions:        0);0( uu =+ α  

                                                       0);0( υα =+u�  

with v0 ≡ 0 for continuous dependence of the solution on the parameter α also 
in the transition from α  =1– to α = 1+. 

Explicit Solution (in both cases):  

 ))(–();( 0
α

αα ctEutu = , 

where )(zEα  denotes the familiar Mittag-Leffler function defined by (cf., e.g., 
Srivastava and Kashyap [52, p. 42, Equation II. 5 (23)]) 
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II. The Fractional (Diffusion-Wave) Partial Differential Equation  

 2

2

2

2

x
uk

t
u

∂
∂

=
∂
∂

β

β
 (3.6) 

 )10;;0( ≤<∞<<∞−> βxk , 

where );,( βtxuu =  is assumed to be a causal function of time (t > 0) with  

 0);,( =∞ βtu ∓ . 

Case II.1: Fractional Diffusion   (0 < β  ≤ 2
1 )  

                  Initial Condition:          u (x, 0+; β) = f(x) 

Case II.2: Fractional Wave         ( 2
1   < β  ≤ 1) 

                  Initial Conditions:         u (x, 0+; β) = f (x)  

                                                         u� (x, 0+; β) = g (x) 
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with g(x) ≡ 0 for continuous dependence of the solution on the parameter β also 
in the transition from β  = 2

1 – to β = 2
1 +. 

Explicit Solution (in both cases:) 

 ∫ −=
∞

∞−
ξξβξβ dxfttxu c )();,();,( . , (3.7) 

where the Green function );,( βtxc.  is given by  
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which can readily be expressed in terms of Wright's (generalized Bessel) func-
tion )(zJ μ

ν  defined by (cf., e.g., Srivastava and Kashyap [52, p. 42, Equation 
II.5(22)])  

 ∑
−−Γ

−
=

∞

=0 )1(!
)(:)(

n

n

nn
zzJ

μν
μ

ν . (3.9) 

4. FRACTIONAL DIFFERINTEGRAL OPERATORS BASED UPON  
THE CAUCHY-GOURSAT INTEGRAL FORMULA 

Operators of fractional differintegrals (that is, fractional derivatives and 
fractional integrals), which are based essentially upon the familiar Cauchy-
Goursat integral formula, were considered by (among others) Sonin in 1869, 
Letnikov in 1868 onwards, and Laurent in 1884. In recent years, many authors 
have demonstrated the usefulness of fractional calculus operators (based upon 
the Cauchy-Goursat integral formula) in obtaining particular solutions of nu-
merous families of homogeneous (as well as nonhomogeneous) linear ordinary 
and partial differential equations which are associated, for example, with many 
of the following celebrated equations as well as their close relatives: 

I. The Gauss Equation:  

 0])1([)1( 2

2
=−++−+− w

dz
dwz

dz
wdzz αββαγ  (4.1) 
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II. The Kummer Equation:  

 0)(2

2
=−−+ w

dz
dwz

dz
wdz αγ  (4.2) 

III. The Euler Equation:  

 02
2

2
2 =−+ w

dz
dwz

dz
wdz ρ  (4.3) 

IV. The Coulomb Equation:  

 0)()2(2

2
=−+−+ λμλ

dz
dwz

dz
wdz  (4.4) 

V. The Laguerre-Sonin Equation:  

 0)1(2

2
=+−++ w

dz
dwz

dz
wdz λα  (4.5) 

VI. The Chebyshev Equation:  

 0)1( 2
2

2
2 =+−− w

dz
dwz

dz
wdz λ  (4.6) 

VII. The Weber-Hermite Equation:  

 0)1(22

2
=−+− w

dz
dwz

dz
wd λ  (4.7) 

Numerous earlier contributions on fractional calculus along the afore-
mentioned lines are reproduced, with proper credits, in the works of Nishimoto 
(cf. [29] and [31]). Moreover, a rather systematic analysis (including intercon-
nections) of many of the results involving (homogeneous or nonhomogeneous) 
linear differential equations associated with (for example) the Gauss hyper-
geometric equation (4.1) can be found in the works of Nishimoto et al. ([37] 
and [38]) and the recent contribution on this subject by Wang et al. [63] (see 
also some other recent applications considered by Lin et al. [19] and Prieto et 
al. [42]). 
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In the cases of (ordinary as well as partial) differential equations of 
higher orders, which have stemmed naturally from the Gauss hypergeometric 
equation (4.1) and its many relatives and extensions, including some of the 
above-listed linear differential equations (4.2) to (4.7), there have been several 
seemingly independent attempts to present a remarkably large number of scat-
tered results in a unified manner. We choose to furnish here the generalizations 
(and unifications) proposed in one of the latest works on this subject by Tu et 
al. [59] in which references to many earlier related works can be found. We 
find it to be convenient to begin by recalling the following definition of a frac-
tional differintegral (that is, fractional derivative and fractional integral) of 
f (z) of order ν ∈ . 

Definition (cf. [29], [31], and [57]). If the function f (z) is analytic and 
has no branch point inside and on *, where  

 * := {*–, *+},  (4.8) 

*– is a contour along the cut joining the points z and )(ziℑ+∞− , which starts 
from the point at ,∞−  encircles the point z once counter-clockwise, and returns 
to the point at ,∞−  *+ is a contour along the cut joining the points z and 

)(ziℑ+∞ , which starts from the point at ,∞  encircles the point z once counter-
clockwise, and returns to the point at ,∞  

 ∫ +−

+Γ
==

*
1)(

)(
2

)1(:)()( ννν
ζ

ζζ
π

ν
z

df
i

zcfzf  (4.9) 

 ,...})3,2,1{:;\ −−−=∈ −− ν  
and  
 )()}({lim:)( ∈=

−→
− nzfzf

n
n ν

ν
, (4.10) 

where z≠ζ , 
 πζπ ≤−≤− )(arg z      for   *–,  (4.11) 
and  
 πζ 2)(arg0 ≤−≤ z      for   *+, (4.12) 

then fν (z) (ν > 0) is said to be the fractional derivative of  f (z) of order ν and 
fν (z) (ν < 0) is said to be the fractional integral of f (z) of order – ν, provided 
that  
 | fν (z) | < ∞          (ν ∈ ). (4.13) 
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Throughout the remainder of this section, we shall simply write fν  for 
fν (z) whenever the argument of the differintegrated function f is clearly under-
stood by the surrounding context. Moreover, in case f is a many-valued func-
tion, we shall tacitly consider the principal value of f  in this investigation. 

Each of the following general results is capable of yielding particular 
solutions of many simpler families of linear ordinary fractional differintegral 
equations (cf. Tu et al. [59]) including (for example) the classical differential 
equations listed above [cf. Equations (4.1) to (4.7)]. 

Theorem 1. Let P (z; p) and Q (z; q) be polynomials in z of degrees p 
and q, respectively, defined by  

 ∑=
=

−
p

k

kp
k zapzP

0
:);(                                                

 );0()( 0
1

0 ∈≠∏ −=
=

pazza
p

j
j  (4.14) 

and  

 );0(:);( 0
0

∈≠∑=
=

− qbzbqzQ
q

k

kq
k  (4.15) 

Suppose also that fν (≠ 0) exists for a given function f. 

Then the nonhomogeneous linear ordinary fractional differintegral 
equation:  
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⎛+ −−μφν  (4.16) 

 ),;,(  ∈∈ qpνμ . 

has a particular solution of the form:  
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where, for convenience,  

 ∫ ∈=
z

pzzzd
pP
qQqpzH }),...,1{\(

);(
);(:),;( ζ

ζ
ζ , (4.18) 

provided that the second member of  (4.17) exists. 

Theorem 2. Under the various relevant hypotheses of Theorem 1, the 
homogeneous linear ordinary fractional differintegral equation:  
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 ),;,(  ∈∈ qpνμ  

has solutions of the form:  

 ( ) 1
),;()( +−

−= μνφ qpzHeKz , (4.20) 

where K is an arbitrary constant and H(z; p, q) is given by (4.18), it being pro-
vided that the second member of (4.20) exists. 

Next, for a function u = u (z, t) of two independent variables z and t, we 
find it to be convenient to use the notation:  

 νμ

ν

tz
um

∂∂

∂ +
 

to abbreviate the partial fractional differintegral of u (z, t) of order μ with re-
spect to z and of order ν with respect to t (μ, ν ∈ ). And we now state the fol-
lowing general result (cf. Tu et al. [59]): 
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Theorem 3. Let the polynomials P (z; p) and Q (z; q) be defined by 
(4.14), (4.15), respectively. Suppose also that the function H (z; p, q) is given 
by (4.18). 

Then the partial fractional differintegral equation:  

 k

kp

k

q

k
kk

z
uqzQ

k
pzP

kz
upzP

−

−−

= =
−

∂

∂
⎥
⎦

⎤
⎢
⎣

⎡
∑ ∑ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂

∂
μ

μ

μ

μ νν1

1 1
1 )1;(

1
);();(  

 
tz
u

tz
u

z
u

p

p

p

p

p

p

∂∂

∂
+

∂∂

∂
=

∂

∂
+

−

+−

−

+−

−

−

μ

μ

μ

μ

μ

μ
βαγ

1

2

2
 (4.21) 

 ),;,(  ∈∈ qpνμ  

has solutions of the form:  
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where K1 and K2 are arbitrary constants, α, β, and γ are given constants, and 
(for convenience)  
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with  

 0!: ανδ pp⎟
⎠
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⎝
⎛= , (4.24) 

provided that the second member of  (4.22) exists in each case. 

We conclude this section by remarking further that either or both of the 
polynomials P(z; p) and Q(z; q), involved in Theorems 1 to 3, can be of degree 
0 as well. Thus, in the definitions (4.14) and (4.15) (as also in Theorems 1 to 
3),  may easily be replaced (if and where needed) by 0. Furthermore, it is 
fairly straightforward to see how each of these general theorems can be suitably 
specialized to yield numerous simpler results scattered throughout the ever-
growing literature on fractional calculus. 
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5. APPLICATIONS INVOLVING A CLASS  
OF NON-FUCHSIAN DIFFERENTIAL EQUATIONS 

In this section, we aim at applying Theorem 1 in order to find (explicit) 
particular solutions of the following general class of non-Fuchsian differential 
equations with six parameters: 

 )(1 1    
z

1 22

2
z

z
l

zzdz
d

z
l

zdz
dl ϕεδγϕβαϕ

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++++⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +++⎟

⎠
⎞

⎜
⎝
⎛ +  

 }).1,0{\()( −∈= zzf  (5.1) 

where f  is a given function and the parameters α, β, γ, δ, ε, and l are unre-
stricted, in general. Indeed, if we make use of the transformation:  

 )()( zezz zφϕ λρ= , (5.2) 

constrain the various parameters involved in (5.1) and (5.2) so that  

 
2

411
2
1 εβρ +±−

=−=     end   
2

42 γαα
λ

+±−
= , (5.3) 

then Theorem 1 would eventually imply that the nonhomogeneous linear ordi-
nary differential equation (5.1) has a particular solution in the form:  

 ( 1
)2(11 )( )()()()( )( −

+−−−
−

−− ⋅+⋅== zlzzz elzzfezezzezz αλαν
ν

λρλρλρ φϕ  

 ) ),};,0{\()( 1
)2(  ∈−∈⋅+ −

+−+ νν
αλαν lzelz zl  (5.4) 

and (by Theorem 2) the corresponding homogeneous linear ordinary differen-
tial equation:  

 0)(111 22

2
=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++++⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +++⎟

⎠
⎞

⎜
⎝
⎛ + z

z
l

zzdz
d

z
l

zdz
d

z
l ϕεδγϕβαϕ  (5.5) 

 })1,0{\( −∈z , 

has solutions given by, 
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 ( ) 1
)2()()()( −

+−+ ⋅+== ν
αλανλρλρ ϕϕ zlzz elzeKzzezz  (5.6) 

 )};1,0{\(  ∈−∈ νz  

where K=$ is an arbitrary constant, the parameters ρ and λ are given (as be-
fore) by (2.3), and  

 
αλ

δραλν
+

++
=

2

2l .  

For various special choices for the free parameters occurring in (5.1) 
and (5.5), one can apply the results of this section to many known non-Fuchsian 
differential equations. These include (for example) a special limit (confluent) 
case of the Gauss hypergeometric equation (4.1), referred to as the Whittaker 
equation (cf., e.g., [66, p. 337, Equation 16.1 (B)]; see also [5, Vol. I, p. 248, 
Equation 6.1 (4)]), the so-called Fukuhara equation (cf. [7]; see also [33]), the 
Tricomi equation (cf. [45, p. 7, Equation 1.2 (1)]; see also [5, Vol. I, p. 251, 
Equation 6.2 (13)]), the familiar Bessel equation (cf. [65]), and so on. For a sys-
tematic investigation of these and many other closely-related differential equa-
tions (including, for example, many of the familiar differential equations list at 
the beginning of Section 4 here), we refer the interested reader to the recent 
works of Nishimoto et al. ([32] to [38]), Salinas de Romero et al. ([45] and 
[46]), Galué [8], Lin et al. ([20] to [25]), Tu et al. ([59] to [62]), and Wang et 
al. ([63] and [64]). 

6. THE CLASSICAL GAUSS AND JACOBI DIFFERENTIAL EQUATIONS 
REVISITED  

The main purpose of this section (and Section 7 below) is to follow 
rather closely and analogously the investigations in (for example) [16], [23], 
[53], [63] and [64] of solutions of some general families of second-order linear 
ordinary differential equations, which are associated with the familiar Bessel 
differential equation of general order ν (cf. [5], Vol. II, Chapter 7]; see also 
[65] and [66, Chapter 17]): 

 0)( 22
2

2
2 =−++ wz

dz
dwz

dz
wdz ν , (6.1) 

which is named after Friedrich Wilheim Bessel (1784–1846). More precisely, 
just as in the earlier works [21] and [53] (see also [17] and [18]), which dealt 
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systematically with Legendre's differential equation (cf. [5. Vol. I, p. 121, 
Equation 3.2 (1)]; see also [66, Chapter 15]): 

 0
1

)1(2)1( 2

2

2

2
2 =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−++−+− w

zdz
dwz

dz
wdz μνν , (6.2) 

we aim here in this section at demonstrating how the underlying simple frac-
tional-calculus approach to the solutions of the classical differential equations 
(6.1) and (6.2) would lead us analogously to several interesting consequences 
including (for example) an alternative investigation of solutions of the follow-
ing two-parameter family of second-order ordinary differential equations (see 
also [63]): 

 0)1(])2[()1( 2

2
=+−+++−+− w

dz
dwz

dz
wdzz λρλσλλρ , (6.3) 

We begin by setting  

     σρλνμ ====−===−= 10210 and,,0,1,1,11,,2 bbaaaqp6  (6.4) 
 )∈≠ λρ ;0( ) 

in Theorem 1. We can thus deduce the following application of Theorem 1 
relevant to the linear ordinary differential equation (6.3). 

Theorem 4. If the given function f satisfies the constraint (4.13) and 
0≠−λf , then the following nonhomogeneous linear ordinary differential 

equation: 

 
)()1(])2[()1( 2

2
zf

dz
dz

dz
dzz =+−+++−+− φλρλφσλλρφ

 (6,5) 

 );0};1,0{\(  ∈≠∈ λρz  

has a particular solution of the form: 

 ( ) 11
11 )1()1()()( )( −

+−
−

−−−−
− −⋅⋅−⋅⋅= λ

σρσσρσ
λφ zzzzzfz  (6.6) 

 );0};1,0{\(  ∈≠∈ λρz  

provided that the second member of (6.6) exists. 
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Furthermore, the following homogeneous linear ordinary differential 
equation:  

 0)1(])2[()1( 2

2
=+−+++−+− φλρλφσλλρφ

dz
dz

dz
dzz  (6.7) 

 );0};1,0{\(  ∈≠∈ λρz  

has solutions of the form:  

 1))1(()( −
+− −⋅= λ

σρσφ zzKz          );0};1,0{\(  ∈≠∈ λρz , (6.8) 

were K is an arbitrary constant, it being provided that the second member of 
(6.8) exists. 

Remark 1. If we consider the case when |z| < 1, by making use of the 
familiar binomial expansion, we find from the assertion (2.5) of Theorem 4 that 

 ( )∑ <⎟
⎠
⎞

⎜
⎝
⎛ +−=

∞

=
−

−

0
1 )1|(|)1()(

n

nn zznKz λ
σσρφ . (6.9) 

Thus, in view of the following well-exploited fractional differintegral formula:  

 νλπν
ν

λ
λ
λν −−

−Γ
−Γ

= zez i
)(
)()(  (6.10) 

 )(
)(
)(;; ∞<

−Γ
−Γ

∈∈
λ
λνν  z  

we readily obtain 

          ⋅
Γ

−+Γ
= −−−− σλλπ

σ
σλφ 1)1(

)(
)1()( zeKz i  

              )1|(|);2;1,(12 <−−−−−⋅ zzF σλσσρ  (6.11) 

in terms of the Gauss hypergeometric function 2F1 (see [5, Vol. I, Chapter 2]).  

Remark 2. If we consider the case when |z| > 1, by appropriately apply-
ing the familiar binomial expansion once again, we find from the assertion (6.8) 
of Theorem 4 that 
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 ( ) )1|(|)1()(
10

)( >∑ ⎟
⎠
⎞

⎜
⎝
⎛ +−=

−

∞

=

−+− zzneKz
n

nni

λ

ρσρπ σρϕ  (6.12) 

Thus, in view of the fractional differintegral formula (6.10), we find the follow-
ing explicit solution of the differential equation (6.7) when |z| > 1: 

              1)1(
)(

)1()( +−−++−
−Γ

−−Γ
= λρσρλπ

ρ
ρλϕ zeKz i  

 )1|(|1;;1,12 <⎟
⎠
⎞

⎜
⎝
⎛ −−−−⋅ z

z
F ρρλσρ , (6.13) 

in terms of the Gauss hypergeometric function 2F1 (see [5, Vol. I, Chapter 2]).  

7. A FAMILY OF UNIFIED ALTERNATIVE SOLUTIONS RESULTING 
FROM THEOREM 4 

We now propose to develop alternative solutions of several classical 
differential equations of mathematical physics in a unified manner by suitably 
applying the assertions of Theorem 4, Remark 1, and Remark 2. 

I. Gauss's Differential Equation [see also Equation (4.1)]: 

 0])1([)1( 2

2
=−++−+− αβϕϕβαγϕ

dz
dz

dz
dzz , (7.1) 

which possesses the following well-known power-series solution relative to the 
regular singular point z = 0 (see, for example, [12, p. 162]): 

 )1|(|);;,()( 12
)1( <= zzFz γβαϕ  (7.2) 

Furthermore, upon setting 

 αγσβαραλ −=−−== and1,  

in (6.11), we obtain the following explicit solution of (7.1): 

 )1|(|);2;1,1()( 12
1)2( <−+−+−= − zzFzz γγβγαϕ γ  (7.3) 
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Thus, by combining the linearly independent solutions )()1( zϕ  and 

)()2( zϕ , we find the following well-known general solution of the Gauss dif-
ferential equation (7.1) by means of fractional calculus: 

)()()( )2(
2

)1(
1 zKzKz ϕϕϕ +=  

  );2;1,1();;,( 12
1

2121 zFzKzFK γγβγαγβα γ −+−+−+= −    )1|(| <z , (7.4)  

where K1 and K2 are arbitrary constants, it being understood that each member 
of (7.4) exists.  

Alternatively, if we set 

 βγααβρβλ −=−−== and1,  

in (6.13), then we obtain the following explicit solution of (7.1) [12, p. 162]: 

 ⎟
⎠
⎞

⎜
⎝
⎛ +−+−= −

z
Fzz 1;1;1,)( 12

)3( βαγααϕ α      )1|(| <z , (7.5) 

If, on the other hand, we choose to set  

 αγσβαραλ −=−−== and1,  

in (6.12), then we obtain the following further explicit solution of (7.1) [12, p. 162]: 

 ⎟
⎠
⎞

⎜
⎝
⎛ +−+−= −

z
Fzz 1;1;,1)( 12

)4( αββγβϕ β      )1|(| <z , (7.6) 

which does indeed follow also from (7.5) upon interchanging the röles of the 
parameters α  and β . Thus, if we combine the solutions )()3( zϕ  and )()4( zϕ  
appropriate to the point at infinity, we find the following general solution of 
the Gauss differential equation (7.1) by means of fractional calculus: 

        )()()( )4(*
2

)3(*
1 zKzKz ϕϕϕ +=  

   ⎟
⎠
⎞

⎜
⎝
⎛ +−+−= −

z
FzK 1;1;1,12

*
1 βαγααα  

             ⎟
⎠
⎞

⎜
⎝
⎛ +−+−+ −

z
FzK 1;1;,112

*
2 αββγββ      )1|(| <z , (7.7) 
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where *
1K  and *

2K  are arbitrary constants, it being understood that each mem-
ber of (7.7) exists. 

Lastly, since any solution of the Gauss differential equation (7.1) is 
linearly expressible in terms of two linearly independent solutions (see, e.g., 
[12, p. 168]), it is not difficult to deduce from the above observations that (see, 
for example, [5, Vol. I, p. 108, Equation 2.10 (2)])  

           ⎟
⎠
⎞

⎜
⎝
⎛ +−+−−= −

z
FzAzF 1;1;1,)();;,( 1212 βαγααγβα α  

                 ⎟
⎠
⎞

⎜
⎝
⎛ +−+−−+ −

z
FzB 1;1;,1)( 12 αββγββ  (7.8) 

 )0;|)arg(|;1|(| πεεπ <<−≤−> zz . 

where, for convenience, the coefficients A and B are given by 

 
)()(
)()(:

αγβ
αβγ

−ΓΓ
−ΓΓ

=A      and     
)()(
)()(:

βγα
βαγ

−ΓΓ
−ΓΓ

=B  (7.9) 

The analytic continuation formula (7.8) is usually derived by the calcu-
lus of residues and the Mellin-Barnes contour integral representation for the 
Gauss hypergeometric function occurring on its left-hand side (see, for details, 
[5, Vol. I, p. 62, Section 2.1.4]). Moreover, it is easily seen from this analytic 
continuation formula (7.8) that asymptotically, for large |z|, we have  

 βαγβα −− −+− )()(~);;,(12 zBzAzF  (7.10) 

 )0;|)arg(|;|(| πεεπ <<−≤−∞→ zz , 

where the coefficients A and B are given (as before) by (7.9). 

II. Jacobi's Differential Equation:  

       0)1(])2([)1( 2

2
2 =Θ++++

Θ
++−−+

Θ
− βαννβααβ

dz
dz

dz
dz , (7.11) 
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which in its special case when 0∈= nν , would reduce to the relatively more 
familiar differential equation satisfied by the classical Jacobi polynomials 

)(),( zPn
βα  given explicitly by 
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Indeed, upon setting  

 ΦΘ−− aaaa and
4
1,

2
1,21 2

2

2

2

dz
d

dz
d

dz
d

dz
dzz . 

Jacobi's differential equation (7.11) assumes the following form: 

 0)1(])2(1[)1( 2

2
=Φ++++

Φ
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Φ
− βαννβαα

dz
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dzz .(7.13) 

Clearly, we have  

 ⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=ΘΦ=−Θ
2

1)(and)()21( zzzz . (7.14) 

By setting 

 βνσβανρβανλ −−=++=+++= and2,1  

in (6.11) and (6.13), or (alternatively) by directly applying the hypergeometric 
solutions given by (7.2), (7.3), (7.5) and (7.6), we obtain the following explicit 
solutions of (7.13): 

 );1;1,()( 12
)1( zFz ++++−=Φ αβανν      )1|(| <z , (7.15) 

 );1;1,()( 12
)2( zFzz αβνανα −++−−=Φ −      )1|(| <z , (7.16) 
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and 
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⎛ ++++++++=Φ −−−−

z
Fzz 1;22;1,1)( 12

1)4( βανβανβνβαν   ).1|(| >z  

  (7.18) 

Thus, if we make use of the relationships given by (7.14) in our obser-
vations (7.15) to (7.18), we are led fairly easily to the following explicit solu-
tions of the general Jacobi differential equation (7.11): 
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Remark 3. The solution )()1( zΘ  given by (7.19) can indeed be rewrit-

ten in terms of the classical Jacobi function )()(),( ∈νβα
ν zP  defined by  
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Remark 4. In view of the familiar Euler transformation (see, for exam-
ple [5, Vol. I, p. 64, Equation 2.1.4 (23)]): 



 An Elementary and Introductory Approach to Fractional Calculus and Its Applications 29 

Prilozi, Odd. mat. teh. nauki, XXIX, 1‡2 (2008), str. 7‡35 

 );;,()1();;,( 1212 zFzzF γβγαγγβα βαγ −−−= −−−  (7.24) 

 )0;|)1arg((| πεεπ <<−≤− z , 

we can rewrite the solution )()4( zΘ  given by (7.22) in the following equivalent 
form: 
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 );2|1(| ∈>− νz , 

which obviously is expressible in terms of the Jacobi function of the second 
kind defined by (cf., e.g., [5, Vol. II, p. 170, Equation 10.8 (18)]) 
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In conclusion, we observe that such general results as Theorems 1 to 3 
and their various companions (proven by Tu et al. [59]) can be applied simi-
larly in order to derive explicit solutions of many other interesting families of 
ordinary and partial differential equations. 

8. FURTHER MISCELLANEOUS APPLICATIONS OF FRACTIONAL 
CALCULUS 

For the purpose of those readers who are interested in pursuing investi-
gations on the subject of fractional calculus, we give here references to some of 
the other applications of fractional calculus operators in the mathematical sci-
ences, which are not mentioned in the preceding sections. 

(i) Theory of Generating Functions of Orthogonal Polynomials and 
Special Functions (cf. [54]); 
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(ii) Geometric Function Theory (especially the Theory of Analytic, 
Univalent, and Multivalent Functions) (cf. [55] and [56]); 

(iii) Integral Equations (cf. [10], [49] and [50); 
(iv) Integral Transforms (cf. [15] and [26]); 
(v) Generalized Functions (cf. [26]); 
(vi) Theory of Potentials (cf. [44]). 

A remarkably significant number of publications are emerging regu-
larly in many of these additional areas of applications of fractional calculus as 
well. 
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R e z i m e 
 

ELEMENTAREN  I VOVEDEN PRISTAP KON FRAKTALNO  
INFINITEZIMALNO SMETAWE (FRAKCIONALEN KALKULUS)  

I NEGOVITE PRIMENI 

 Predmetot na frakcionalno infinitezimalno smetawe (frakcionalen 
kalkulus) (t.e. smetawe na integrali i izvodi od proizvolen realen ili komplek-
sen red) se zdobi so zna~itelna popularnost i zna~ajnost vo poslednite tri dekadi, 
najmnogu poradi demonstriranite primeni na ovoj metod vo brojni navidum sosem 
razli~ni i {iroki poliwa na naukata i in`enerstvoto. Toj navistina obezbeduva 
nekolku potencijalno korisni alatki za re{avawe na diferencijalni и integral-
ni ravenki i razличni drugi problemi koi vklu~uvaat specijalni funkcii od 
matemati~kata fizika, kako i nivniте pro{iruvawa i generalizacii od edna i 
pove}e promenlivi. Glavna cel na ovој труд* e da se prezentira kus elementaren i 
voveden pristap kon teorijata na frakciono infinitezimalno smetawe i negovite 
primeni, osobeno pri razvivawe na re{enija na одделni interesni semejstva na 
obiчni i parcijalni frakcioni integrоdiferencijalni ravenki. Isto taka, }e 
bidat indicirani relevantni vrski na nekoi od rezultatite prezentirani vo ovој 
труд so оние dobieni vo повеќе porane{ni trudovi od ovaa oblast. 

Klu~ni zborovi: frakcionalno infinitezimalno smetawe; diferenci-
jalni ravenki; integralni ravenki; integrodiferencijalni ravenki; specijalni 
funkcii; matemati~ka fizika; Fuchsian- i ne-Fuchsian diferencijalni ravenki 
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