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1. INTRODUCTION AND A BRIEF HISTORICAL SURVEY

The concept of it fractional calculus that is, calculus of integrals and
derivatives of any arbitrary real or complex order) seems to have stemmed from
a question raised in the year 1695 by Marquis de 1I'Hopital (1661-1704) to
Gottfried Wilhelm Leibniz (1646-1716), which sought the meaning of Leibniz's
(currently popular) notation

d"y
dx"

for the derivative of order ne N := {0,1,2,...} when n :% (What if n =%? In

his reply, dated 30 September 1695, Leibniz wrote to I'Hopital as follows:

... This is an apparent paradox from which, one day, useful conse-
quences will be drawn. ...

Subsequent mention of fractional derivatives was made, in some con-
text or the other, by (for example) Euler in 1730, Lagrange in 1772, Laplace in
1812, Lacroix in 1819, Fourier in 1822, Liouville in 1832, Riemann in 1847,
Greer in 1859, Holmgren in 1865, Griinwald in 1867, Letnikov in 1868,
Laurent in 1884, Nekrassov in 1888, Krug in 1890, and Weyl in 1917. In fact,
in his 700-page textbook, entitled ,,Traité du Calcul Différenticl et du Calcul
Intégral' (Second edition; Courcier, Paris, 1819), S. F. Lacroix devoted two
pages (pp. 409-410) to fractional calculus, showing eventually that

1

d2 _2Vv
LN

do?

In addition, of course, to the theories of differential, integral, and inte-
gro-differential equations, and special functions of mathematical physics as
well as their extensions and generalizations in one and more variables, some of
the areas of present-day applications of fractional calculus include

1. Fluid Flow

2. Rheology

3. Dynamical Processes in Self-Similar and Porous Structures
4. Diffusive Transport Akin to Diffusion

5. Electrical Networks
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An Elementary and Introductory Approach to Fractional Calculus and Its Applications 9

6. Probability and Statistics
7. Control Theory of Dynamical Systems
8. Viscoelasticity
9. Electrochemistry of Corrosion
10. Chemical Physics
end so on (see, for details, [11], [41], and [14].

The first work, devoted exclusively to the subject of fractional calculus,
is the book by Oldham and Spanier [39]. One of the most recent works on the
subject of fractional calculus is the book by Podlubny [41]. The latest (but cer-
tainly not the last) works on the subject of fractional calculus and its applica-
tions are the volume edited by Hilfer [11] and the monograph emphasizing
upon the theory and applications of fractional differential equations by Kilbas
et al. [14]. Indeed, in the meantime, numerous other works (books, edited vol-
umes, and conference proceedings) have also appeared (see, €. g., [13], [15],
[26], [27], [28], [29], [31], [30], [43], [44], [47], [48] and [55]). And today
there exist at least two international journals which are devoted almost entirely
to the subject of fractional calculus: (i) Journal of Fractional Calculus and (ii)
Fractional Calculus and Applied Analysis.

Here, in this expository lecture, we aim at presenting an elementary and
introductory overview of the theory of fractional calculus and of some of its
applications.

2. THE RIEMANN-LIOUVILLE AND WEYL OPERATORS
OF FRACTIONAL CALCULUS

Now we begin by defining the linear integral operators mathcal .~ and
A by

(If)(%) = [ f (bt (2.1)
and

()%= [ F (bt (2.2)

respectively. Then it is easily seen by iteration (and the principle of mathemati-
cal induction) that

n I N VN
(r f)(x)_—(n_l)!(j)(x " ftydt  (nenw) 2.3)
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10 H. M. Srivastava

and

n I R PN =
(% f)(x)_—(n_l)!(j)(x O™ f(dt  (new) (2.4)

where, just as elsewhere in this presentation,
N:={1,2,3,...} =N, \ {0}.
With a view to interpolating (n — 1) between the positive integer values
of n, one can set
(n—=D!=T(n) (2.5

in terms of the familiar Gamma function. Thus, in general, Equations (2.3) and
(2.4) would lead us eventually to the familiar Riemann-Liouville operator R*

and the Weyl operator ‘W* of fractional integral of order u (1 € C), defined by
(cf., e.qg., Erdélyi et al. [6. Chapter 13])

(R4 )0 =—— [ (x-)* f Ot (=()>0) (2.6)
I'(w o
and
(WX =—— (L= T fdt (G() > 0) 2.7)
()

... respectively, it being tacitly assumed that the function f (t) is so constrained
that the integrals in (2.6) and (2.7) exist.

In the remarkably vast literature on fractional calculus and its fairly
widespread applications, there are potentially useful operators of fractional de-

rivatives Z)f(‘.o and Z)ééw of order u (y e ), which correspond to the above-

defined fractional integral operators ®¥ and “W# , respectively, and we have
d™ (e

(M-D<R()<m meN)
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and

(@%w f )(x) :=;(—Tn(wwﬂ f )(x) (2.9)

(M-D<R(u)<m, mMeN)

There also exist, in the considerably extensive literature on the theory
and applications of fractional calculus, numerous further extensions and gener-

alizations of the operators ®* and W#, D/, and Di.s, each of which we

have chosen to introduce here for the sake of the non-specialists in this subject.

3. INITIAL-VALUE PROBLEMS BASED UPON FRACTIONAL CALCULUS

If we define, as usual, the Laplace transform operator £ by

L{f(t): s} = }(e‘St f (t)dt = F(s), (3.1)
0

provided that the integral exists, for the Riemann-Liouville fractional derivative

operator D, of order u, we have
p t:0 H

L {(@{jo, £)t):s} = sF(s)- :g; s (@{j(;"‘l)f (t) (3.2)

t=0
(N-12R(u)<n; neN)

Such initial values as those occurring in (3.2) are usually not interpret-
able physically in a given initial-value problem. This situation is overcome at
least partially by making use of the so-called Caputo fractional derivative
which arose in several important works, dated 1969 onwards, by M. Caputo
(see, for details, [41, p. 78 et seq.]; see also [14, p. 90 et seq.]).

In many recent works, especially in the theory of viscoelasticity and in
hereditary solid mechanics, the following (Caputo's) definition is adopted for
the fractional derivative of order & > 0 of a causal function (t) (i.e, (t) = 0 for
t<0):
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12 H. M. Srivastava

f(n)(t) (e=neNy)

a® — (n
f(t): 1t W dr (a—-l<a<n; eNg) G
l_,(n_a) ()(t _T)a—n-i—l

where f (" (t) denotes the usual (ordinary) derivative of order n and I is the

Gamma function occurring already in (2.4) and (2.5). One can apply the above
notion in order to generalize some basic topics of classical mathematical phys-
ics, which are treated by simple, linear, ordinary or partial, differential equa-
tions, since [cf. Equation (3.2) and Definition (3.3)]

L{ﬂ f(t): s} =s?F(s)— nil s2—k=1£ () (04) (3.4)
dt* k=0

which obviously is more suited for initial-value problems than (3.2). See, for
details, Gorenflo et al. [9], Podlubny [41] and Kilbas et al. [14].

The basic processes of relaxation, diffusion, oscillations, and wave
propagation have been generalized by several authors by introducing fractional
derivatives in the governing (ordinary or partial) differential equations. This
leads to superslow or intermediate processes that, in mathematical physics, we
may refer to as fractional phenomena. Our analysis of each of these pheno-
mena, carried out by means of fractional calculus and Laplace transforms, leads
to certain special functions in one variable of Mittag-Leffler and Fox-Wright
types. These useful special functions are investigated systematically as relevant
cases of the general class of functions which are popularly known as Fox's H-
function after Charles Fox (1897-1977) who initiated a detailed study of these
functions as symmetrical Fourier kernels [see, for details, Srivastava et al. [51]
and [52].

We choose to summarize below some recent investigations by Gorenflo
et al. [9] who did indeed make references to numerous earlier closely-related
works on this subject.

I. The Fractional (Relaxation-Oscillation) Ordinary Differential Equation

a

du
—+CcUu(t;x)=0 3.5
o HCu ) (3.5)

(c>0; 0<a<2)
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Casel.l: Fractional Relaxation O<a<l
Initial Condition: u(0+; @) = Uy

Casel.2: Fractional Oscillation (l<a<2)
Initial Conditions: u(0+; @) = Uy
u(0+; @) = vy

with vy = 0 for continuous dependence of the solution on the parameter « also
in the transition from a =1-to o= 1+.

Explicit Solution (in both cases):
u(t; ) = UpE, (<(c)?),

where E,(Z) denotes the familiar Mittag-Leffler function defined by (cf., eg.,
Srivastava and Kashyap [52, p. 42, Equation IL. 5 (23)])
0 ZN 1 (0+) a—leg
E,(=Y ——=— ga dg
n-ol'(en+1) 2a °, (%-z
(a>0; ze0)

II. The Fractional (Diffusion-Wave) Partial Differential Equation

My _, o
o
(k>0;, —ow<x<w; 0<p<L1),

(3.6)

where U =U(X,t; £) is assumed to be a causal function of time (t > 0) with
UG, 8) = 0.
Casell.1: Fractional Diffusion (0<f <)
Initial Condition: u(x, 0+; B) =1(x)
Casell.2: Fractional Wave G <B =1
Initial Conditions: u 0+ A =1
u(x, 0+ f)=9(x
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with g(x) = 0 for continuous dependence of the solution on the parameter £ also
in the transition from # = ;- to f= 3+.

Explicit Solution (in both cases:)
uxt B)= [Gc(S.t Hf(x=£)ds, (3.7)

where the Green function G(X,t; ) is given by

monC(1-g-p | Jf

which can readily be expressed in terms of Wright's (generalized Bessel) func-
tion J/(z) defined by (cf., e.g., Srivastava and Kashyap [52, p. 42, Equation
11.5(22)])

0 ey
|x|gc(x,t;ﬂ)=§ZL [z=ﬂ; 0<ﬂ<1J, (3.8)

1wy 2

nzom : (3.9)

4. FRACTIONAL DIFFERINTEGRAL OPERATORS BASED UPON
THE CAUCHY-GOURSAT INTEGRAL FORMULA

Operators of fractional differintegrals (that is, fractional derivatives and
fractional integrals), which are based essentially upon the familiar Cauchy-
Goursat integral formula, were considered by (among others) Sonin in 1869,
Letnikov in 1868 onwards, and Laurent in 1884. In recent years, many authors
have demonstrated the usefulness of fractional calculus operators (based upon
the Cauchy-Goursat integral formula) in obtaining particular solutions of nu-
merous families of homogeneous (as well as nonhomogeneous) linear ordinary
and partial differential equations which are associated, for example, with many
of the following celebrated equations as well as their close relatives:

I. The Gauss Equation:
2
z(1—z)d—W+[;f—(a+,H+1)z]d—W—aﬂw=0 4.1)
dz? dz
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1. The Kummer Equation:

dw dw
Z—+(y—-2)——-aow=0 4.2
Dy, (4.2)

I11. The Euler Equation:
z —+zd——p w=0 4.3)

IV. The Coulomb Equation:

2
29 22— M (u-2)=0 (4.4)
dz? dz

V. The Laguerre-Sonin Equation:

2
zd—W+(a+1—z)d—W+/1W=O 4.5
dz? dz

VI. The Chebyshev Equation:

d’w _ dw
1-22)—— —z—+ A2w=0 4.6
-2z (4.6)
VIl. The Weber-Hermite Equation:

?—2ZE+(1—1)W:0 4.7)

Numerous earlier contributions on fractional calculus along the afore-
mentioned lines are reproduced, with proper credits, in the works of Nishimoto
(cf. [29] and [31]). Moreover, a rather systematic analysis (including intercon-
nections) of many of the results involving (homogeneous or nonhomogeneous)
linear differential equations associated with (for example) the Gauss hyper-
geometric equation (4.1) can be found in the works of Nishimoto et al. ([37]
and [38]) and the recent contribution on this subject by Wang et al. [63] (see
also some other recent applications considered by Lin et al. [19] and Prieto et
al. [42)).
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16 H. M. Srivastava

In the cases of (ordinary as well as partial) differential equations of
higher orders, which have stemmed naturally from the Gauss hypergeometric
equation (4.1) and its many relatives and extensions, including some of the
above-listed linear differential equations (4.2) to (4.7), there have been several
seemingly independent attempts to present a remarkably large number of scat-
tered results in a unified manner. We choose to furnish here the generalizations
(and unifications) proposed in one of the latest works on this subject by Tu et
al. [59] in which references to many earlier related works can be found. We
find it to be convenient to begin by recalling the following definition of a frac-
tional differintegral (that is, fractional derivative and fractional integral) of
f (2) of order v € R.

Definition (cf. [29], [31], and [57]). If the function f (2) is analytic and
has no branch point inside and on C, where

c:=1{c,c"}, (4.8)

C is a contour along the cut joining the points Zand — oo +i3(2), which starts
from the point at — oo, encircles the point Z once counter-clockwise, and returns
to the point at —oo, C' is a contour along the cut joining the points z and
0 +13(2), which starts from the point at oo, encircles the point zZ once counter-
clockwise, and returns to the point at oo,

_Tw+D ¢ f(Hdd
fL@=ch (@)= i R 4.9)
veR\Z ; 7~ ={-1,-2,-3,..})
and
f_h(2):= lim {f, (20} (neN), (4.10)
v—>—N
where ¢ # 2,
—rlarg((-2)<xr  for C, 4.11)
and
0<arg({—2)<2x for C, (4.12)

then f, (2) (v> 0) is said to be the fractional derivative of f (z) of order vand
f,(2) (v<0) is said to be the fractional integral of f (z) of order — v, provided
that

[f,(2) | < (veR). (4.13)
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Throughout the remainder of this section, we shall simply write f, for
f, (2) whenever the argument of the differintegrated function f is clearly under-
stood by the surrounding context. Moreover, in case f is a many-valued func-
tion, we shall tacitly consider the principal value of f in this investigation.

Each of the following general results is capable of yielding particular
solutions of many simpler families of linear ordinary fractional differintegral
equations (cf. Tu et al. [59]) including (for example) the classical differential
equations listed above [cf. Equations (4.1) to (4.7)].

Theorem 1. Let P (z p) and Q (z q) be polynomials in z of degrees p
and g, respectively, defined by

p
P(z.p)= Yay 2P
k=0

=a0ﬁl(z—zj) (ag #0; peN) (4.14)
]:
and

Q(Z;q):=k§0bk 2K (b %0; gen) @.15)

Suppose also that f, (= 0) exists for a given function f.

Then the nonhomogeneous linear ordinary fractional differintegral
equation:

p q
P(z ) 4, (2)+ La@ﬂ((z; P2 () q)} buk(2)

+(Hat b qr@= 1 (4.16)

(#,v€R; P,qeN).

has a particular solution of the form:

#(2) = ( f_V‘(z) eH(Z;D,Q)J e H(zZp.a) (4.17)
P(z p) -1 v—pu+l

(zeCc\{7,..., zp}),
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18 H. M. Srivastava

where, for convenience,

Q)
PS5 p)

z
H(z p,q)::j A (zeC\{z,...zp}), (4.18)

provided that the second member of (4.17) exists.

Theorem 2. Under the various relevant hypotheses of Theorem 1, the
homogeneous linear ordinary fractional differintegral equation:

P (v q 1%
P(z p)¢.(2)+ [ka(k}ﬂdz p)+ El(k ~ 1]Qk—1 (z q)}¢,u—k (2)

" @q! B Fuq-1(2)=0 (4.19)

(#,veR; p,geN)

has solutions of the form:

P#(2)= K(e-H (zp.9) )v_,,w (4.20)

where K is an arbitrary constant and H(z p, q) is given by (4.18), it being pro-
vided that the second member of (4.20) exists.

Next, for a function U= U (z t) of two independent variables zand t, we
find it to be convenient to use the notation:

o™Vu

ozHatY

to abbreviate the partial fractional differintegral of u (z t) of order x with re-
spect to zand of order v with respect to t (1, v € R). And we now state the fol-
lowing general result (cf. Tu et al. [59]):

Contributions, Sec. Math. Tech. Sci., XXIX, 1-2 (2008), pp. 7-35
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Theorem 3. Let the polynomials P(z p) and Q(z g) be defined by
(4.14), (4.15), respectively. Suppose also that the function H (z p, q) is given
by (4.18).

Then the partial fractional differintegral equation:

NN = A . q( v - oHKy
(Z’ p)az_ﬂ+ Z K H((Z’p)_l_k{:l k—1 Qk—l(z’q_) azfu_k

oH~ pu oH~ p+2u oM~ p+1u

+y =a + (4.21)
ozH=P azM-Pot? T azMPot
(4, veR; p,qeN)
has solutions of the form:
K (e-H@pay & 0
uzty=] 1€ o 1)V € (@#0) (4.22)
Ky(eHEPAD), e a=0;20).

where K; and K, are arbitrary constants, «, S, and yare given constants, and
(for convenience)

g B a4 - .
s P A =D andn::% (@=0; f=0), (4.23)

2c
with
S= (E} plag, (4.24)

provided that the second member of (4.22) existsin each case.

We conclude this section by remarking further that either or both of the
polynomials P(z p) and Q(z q), involved in Theorems 1 to 3, can be of degree
0 as well. Thus, in the definitions (4.14) and (4.15) (as also in Theorems 1 to
3), N may easily be replaced (if and where needed) by Ny. Furthermore, it is
fairly straightforward to see how each of these general theorems can be suitably
specialized to yield numerous simpler results scattered throughout the ever-
growing literature on fractional calculus.

Ipuaosu, O00. maiu. iwex. Hayku, XXIX, 1-2 (2008), cTp. 7-35



20 H. M. Srivastava

5. APPLICATIONS INVOLVING A CLASS
OF NON-FUCHSIAN DIFFERENTIAL EQUATIONS

In this section, we aim at applying Theorem 1 in order to find (explicit)
particular solutions of the following general class of non-Fuchsian differential
equations with six parameters:

1 d% B, 1| de S,e( L
(sz 2 +[a+ Z(HZH dzJ{er Z+ 2 (1+Zﬂ¢(z)
=f(z) (zec\{0,-1}). 5.1

where f is a given function and the parameters «, S, 7, 6, & and | are unre-
stricted, in general. Indeed, if we make use of the transformation:

0(2) = 2°e%(2), (5.2)

constrain the various parameters involved in (5.1) and (5.2) so that

2
—1++ —aty 4
__ 1, —lEJl+de end ,1=M (5.3)

2 2 2 ’

then Theorem 1 would eventually imply that the nonhomogeneous linear ordi-
nary differential equation (5.1) has a particular solution in the form:

0(2)=2°e)(2) = P ((2Pe 1 ()., -(z+1) V- 2Hr07)

(z+1)v+a . e—(“w‘)z)v_1 (zeC\{0~1};veR), (5.4)

and (by Theorem 2) the corresponding homogeneous linear ordinary differen-
tial equation:

2
(Hl_jd_;”J{a+£(1+I—H%+[7+é+i[l+l—ﬂgo(z)=0 (5.5)
z)dz z\' z)|dz z 72 z

(zeC\{0,-1}),

has solutions given by,
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9(2) = 2°ep(2) = Kz’ ((z+ ly+el. e_(u*“)z)v_l (5.6)
(zeC\{0,~1};veR)

where K=$ is an arbitrary constant, the parameters p and A are given (as be-
fore) by (2.3), and

V_/12|+pa+§
2+a

For various special choices for the free parameters occurring in (5.1)
and (5.5), one can apply the results of this section to many known non-Fuchsian
differential equations. These include (for example) a special limit (confluent)
case of the Gauss hypergeometric equation (4.1), referred to as the Whittaker
equation (cf., eq., [66, p. 337, Equation 16.1 (B)]; see also [5, Vol. I, p. 248,
Equation 6.1 (4)]), the so-called Fukuhara equation (cf. [7]; see also [33]), the
Tricomi equation (cf. [45, p. 7, Equation 1.2 (1)]; see also [5, Vol. 1, p. 251,
Equation 6.2 (13)]), the familiar Bessel equation (cf. [65]), and so on. For a sys-
tematic investigation of these and many other closely-related differential equa-
tions (including, for example, many of the familiar differential equations list at
the beginning of Section 4 here), we refer the interested reader to the recent
works of Nishimoto et al. ([32] to [38]), Salinas de Romero et al. ([45] and
[46]), Galué [8], Lin et al. ([20] to [25]), Tu et al. ([59] to [62]), and Wang et
al. ([63] and [64]).

6. THE CLASSICAL GAUSS AND JACOBI DIFFERENTIAL EQUATIONS
REVISITED

The main purpose of this section (and Section 7 below) is to follow
rather closely and analogously the investigations in (for example) [16], [23],
[53], [63] and [64] of solutions of some general families of second-order linear
ordinary differential equations, which are associated with the familiar Bessel
differential equation of general order v (cf. [5], Vol. II, Chapter 7]; see also
[65] and [66, Chapter 17]):

Z —+z—+(22—v2)W=0, (6.1)
dz

which is named after Friedrich Wilheim Bessel (1784—1846). More precisely,
just as in the earlier works [21] and [53] (see also [17] and [18]), which dealt
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22 H. M. Srivastava

systematically with Legendre's differential equation (cf. [5. Vol. 1, p. 121,
Equation 3.2 (1)]; see also [66, Chapter 15]):

2 2
(1—z2)‘:'j—;"+—2z2—"v+(v(v+1)—1“ 2}w=0, (6.2)
7 Z

we aim here in this section at demonstrating how the underlying simple frac-
tional-calculus approach to the solutions of the classical differential equations
(6.1) and (6.2) would lead us analogously to several interesting consequences
including (for example) an alternative investigation of solutions of the follow-
ing two-parameter family of second-order ordinary differential equations (see
also [63]):

2

20-2 31— 20z2+ 2+ 1MW Ap- A1 w=0.  (6.3)
dz> dz
We begin by setting

,UZZ,VI—)//{,, p_lzqzlaa():_l’alzlaaQzoah):p’ and blza (64)
(p#0; LeR)

in Theorem 1. We can thus deduce the following application of Theorem 1
relevant to the linear ordinary differential equation (6.3).

Theorem 4. If the given function f satisfies the constraint (4.13) and
f_, #0, then the following nonhomogeneous linear ordinary differential

equation:

2
Z(l—Z)M+[(p—2/1)z+/1+G]%+/1(p—/1+1)¢= f(2)
dz? dz

(6,5)
(zeC\{0,1}; p#0; AeR)
has a particular solution of the form:
#(2) = (( f (222 (-2P ) .29.1-2P° )4_1 (6.6)
(zeC\{0,1}; p#0; A1€R)

provided that the second member of (6.6) exists.
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Furthermore, the following homogeneous linear ordinary differential
equation:

d*g dg
Z1-2)—+[(p—24)z+ A+o0]—+A(p—-A+1)p=0 (6.7)
dz? dz
(zec\{0,1}; p#0; L€R)
has solutions of the form:

#(2)=K(Z % -(1-2)P*%),, (zec\{0,1}; p#0; AcR), (6.8)

were K is an arbitrary constant, it being provided that the second member of
(6.8) exists.

Remark 1. If we consider the case when |7 < 1, by making use of the
familiar binomial expansion, we find from the assertion (2.5) of Theorem 4 that

#0=K S (7)) gz, (69)
n=

Thus, in view of the following well-exploited fractional differintegral formula:

A iy T(v=A4) 1y
("), T (6.10)
(ve]R; Ze(; r(V—_/?L)<oo)
I'(=4)
we readily obtain
I'(o)
2FR(=p-0o,1-0;2-2-0;2) (z|<]) (6.11)

in terms of the Gauss hypergeometric function ,F; (see [5, Vol. I, Chapter 2]).

Remark 2. If we consider the case when |z > 1, by appropriately apply-
ing the familiar binomial expansion once again, we find from the assertion (6.8)
of Theorem 4 that
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p(2)=Ke P+ 5 (—D”(” ;“j(zp‘”) (Izl>1)  (6.12)
n=0 A-1

Thus, in view of the fractional differintegral formula (6.10), we find the follow-
ing explicit solution of the differential equation (6.7) when |Z > 1:

o(2) = K e 1 7+pro-1) F(A-p-1 ZP—A+1
I'(=p)

1
'ZFI(_P_O'a ﬂ—p—l;p;gj (|z|<D), (6.13)

in terms of the Gauss hypergeometric function ,F, (see [5, Vol. I, Chapter 2]).

7. AFAMILY OF UNIFIED ALTERNATIVE SOLUTIONS RESULTING
FROM THEOREM 4

We now propose to develop alternative solutions of several classical
differential equations of mathematical physics in a unified manner by suitably
applying the assertions of Theorem 4, Remark 1, and Remark 2.

I. Gauss's Differential Equation [see also Equation (4.1)]:

2
20-282 (a4 12132 — 0By =0, (1.1)
dz? dz

which possesses the following well-known power-series solution relative to the
regular singular point z= 0 (see, for example, [12, p. 162]):

oV(@= R@prd (zl<) (72)
Furthermore, upon setting
A=a, p=a—-p-1 and o=y—-«a
in (6.11), we obtain the following explicit solution of (7.1):

0D (@2)=2"7 JF(a-y+L,B-y+12-%2 (z|<l)  (13)
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Thus, by combining the linearly independent solutions ¢! (z) and

(p(z)(z) , we find the following well-known general solution of the Gauss dif-
ferential equation (7.1) by means of fractional calculus:

9(2)=K; pV(2)+ Ky P (2)
=Ky 2R, B: 7 D+ Ky Z T S F(a—y+1, -y +1:2—152)  (12]<1),(74)

where K; and K, are arbitrary constants, it being understood that each member
of (7.4) exists.

Alternatively, if we set
A=p, p=f-a-1 ad a=y-p

in (6.13), then we obtain the following explicit solution of (7.1) [12, p. 162]:
oD @)=2" zﬁ[a, a-y+l; a—ﬂ+1;1j (zl<l), (75
V4

If, on the other hand, we choose to set
A=a, p=a-pf-1 and o=y-«a
in (6.12), then we obtain the following further explicit solution of (7.1) [12, p. 162]:

¢(4)(Z)=Z"3zﬁ(ﬂ—7+1,ﬂ;ﬂ—a+l;5 (z|<l),  (7.6)

which does indeed follow also from (7.5) upon interchanging the roles of the
parameters o and £ . Thus, if we combine the solutions (0(3)(2) and (/7(4)(2)

appropriate to the point at infinity, we find the following general solution of
the Gauss differential equation (7.1) by means of fractional calculus:

9(2) = Ki @ (2)+ K0P (2)

=Kj z7¢ 2F{a,a—7+l;a—ﬂ+l;l)
4

+K§Z_'B2H(ﬁ—7+1,ﬂ;ﬂ—a+l;3 (zl<h, (.7
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where Kl* and K; are arbitrary constants, it being understood that each mem-
ber of (7.7) exists.

Lastly, since any solution of the Gauss differential equation (7.1) is
linearly expressible in terms of two linearly independent solutions (see, €.g.,
[12, p. 168]), it is not difficult to deduce from the above observations that (see,
for example, [5, Vol. I, p. 108, Equation 2.10 (2)])

- 1
2Fi(@ B D= A-"" 2F1(05,a—7/+1;a—/3+1;2j

+B(-2* 2H(ﬂ—7+17ﬂ;ﬂ—a+l;5 (7.8)

(1z]>1; |arg(-2)|s7r—¢&; O<e<m).
where, for convenience, the coefficients A and B are given by

A LOTB-a) o T(@-p) 79)
FBI(r -a) (@I -p)

The analytic continuation formula (7.8) is usually derived by the calcu-
lus of residues and the Mellin-Barnes contour integral representation for the
Gauss hypergeometric function occurring on its left-hand side (see, for details,
[5, Vol. |, p. 62, Section 2.1.4]). Moreover, it is easily seen from this analytic
continuation formula (7.8) that asymptotically, for large |z, we have

2Fi(e, By )~ A-2)% +B(-2) # (7.10)
(|z| > ; |arg(-2)|s7m—¢&; O0<e<n),

where the coefficients A and B are given (as before) by (7.9).

I1. Jacobi's Differential Equation:

2
(1—22)?17?+[ﬂ—a—(a+ﬂ+2)z]?j—?+v(v+a+ﬂ+l)®=0, (7.11)
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which in its special case when v =ne N, would reduce to the relatively more
familiar differential equation satisfied by the classical Jacobi polynomials

Prg“’ﬂ )(z) given explicitly by

@)z & (N+a|n+h Z_—ln_k(z_“jk
i (Z)_EO( k J(n—k}( 2 j 2

n+ao 1-2
_[ Jzﬁ(—n,n+a+ﬂ+l;a+l;7) (7.12)

n

Indeed, upon setting

2 2
Z—1-2z ii—)—li, d—+—>ld— and O .
dz 2 dz d22 4dz2

Jacobi's differential equation (7.11) assumes the following form:

2
Z(l—Z)d—g)+[a+1—(a+,6’+2)Z]d£+v(v+a+,6’+l)¢>:O.(7.13)
dz dz

Clearly, we have

O(1-22)=d(2) and @(z):cp(l_TzJ. (7.14)

By setting
A=v+a+p+1, p=2v+a+pf and oc=-v-p
in (6.11) and (6.13), or (alternatively) by directly applying the hypergeometric
solutions given by (7.2), (7.3), (7.5) and (7.6), we obtain the following explicit
solutions of (7.13):

oV ()= ) F(—v,v+a+B+La+l;z)  (z|<]), (7.15)

D (=% FR(-v-a,v+p+L1-a;2) (z|<l), (7.16)

o3 (z2)= ZVZFI(—V,—v—a;—ZV—a—,B;lJ (z|>D)  (7.17)
A
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and

CD(4)(Z)=z“"“‘ﬁ_lzFl[v+ﬂ+1,v+a+ﬂ+l;2v+a+ﬂ+2;lJ (|z|>1).
z
(7.18)

Thus, if we make use of the relationships given by (7.14) in our obser-
vations (7.15) to (7.18), we are led fairly easily to the following explicit solu-
tions of the general Jacobi differential equation (7.11):

0V (z)= ZFI(—v,v+a+ﬂ+l;a+l; I_sz (1-2|<2), (7.19)

®(2)(z)=(l—z)_azFl(—v—a,erﬂJrl; 1-a; 1;21 (1-2|<2),(7.20)

2

®(3)(Z)=(1—Z)VZFI(—v,v—a;—2v—a—ﬂ; -

j (I1-2z|<2) (7.21)
and

oW (z=1-2* A1, Fl(v+ﬂ+1,v+a+/}+l; 2v+a+ﬁ+2;éj
(7.22)

Remark 3. The solution G)(l)(z) given by (7.19) can indeed be rewrit-

ten in terms of the classical Jacobi function Pv(a’ﬂ ) (2) (v eC) defined by

v—k k
@B n._ 2 (vra\v+p)z-1 z+1
ECEM WA CS S

v+a 1—-2z
=( j 2F1(—v,v+a+ﬂ+l;a+1;TJ (veo). (7.23)

14

Remark 4. In view of the familiar Euler transformation (see, for exam-
ple [5, Vol. I, p. 64, Equation 2.1.4 (23)]):
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2R By =(1-27 % Ry -y - By 2) (7.24)
(largl—2)|f7m—¢;, O<e<nm),

we can rewrite the solution ®# (2) given by (7.22) in the following equivalent
form:

oW (z)=

2v+a+/3+1eizz'ﬂ 2
2F{v+1,v+a+1;2v+a+ﬂ+2;—)
(1 _ Z)v+a+l (1+ Z)ﬁ 1-2

(7.25)
(J1-2z|>2; veQ),

which obviously is expressible in terms of the Jacobi function of the second
kind defined by (cf., e.g., [5, Vol. 11, p. 170, Equation 10.8 (18)])

QBT+ + )V + B+1)

(@f) (5.
A z-D)"* Nz DA TQv+a+ f+2)

2Fl(v+1,v+a+l;2v+a+ﬂ+2;liJ (7.26)

(1-2z|>2; veQ)

In conclusion, we observe that such general results as Theorems 1 to 3
and their various companions (proven by Tu et al. [59]) can be applied simi-
larly in order to derive explicit solutions of many other interesting families of
ordinary and partial differential equations.

8. FURTHER MISCELLANEOUS APPLICATIONS OF FRACTIONAL
CALCULUS

For the purpose of those readers who are interested in pursuing investi-
gations on the subject of fractional calculus, we give here references to some of
the other applications of fractional calculus operators in the mathematical sci-
ences, which are not mentioned in the preceding sections.

(i) Theory of Generating Functions of Orthogonal Polynomials and
Special Functions (cf. [54]);
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(ii) Geometric Function Theory (especially the Theory of Analytic,
Univalent, and Multivalent Functions) (cf. [55] and [56]);

(iii) Integral Equations (cf. [10], [49] and [50);

(iv) Integral Transforms (cf. [15] and [26]);

(V) Generalized Functions (cf. [26]);

(vi) Theory of Potentials (cf. [44]).

A remarkably significant number of publications are emerging regu-
larly in many of these additional areas of applications of fractional calculus as
well.
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Pesume

EJEMEHTAPEH N BOBEJIEH ITPUCTAII KOH ®PAKTAJTHO
NHONHUTEZUMAJTHO CMETAILE (PPAKIIMOHAJIEH KAJIKYJTYC)
N HEIT'OBUTE NIPUMEHU

TIpepgmeToT Ha (pakIMOHATHO WH(MUHUTE3UMATHO cMeTame ((ppakiuoHaIeH
KalKyJyc) (T.e. cMeTame Ha MHTETpalld ¥ U3BOAYU Of IIPOU3BOJICH PEajicH MM KOMILICK-
CeH pefi) ce 30001 CO 3HAYNTETHA TIOIYIapHOCT U 3HAYajHOCT BO MOCIENHATE TPH eKafH,
HajMHOTY IOpaju JEMOHCTPUPAHUTE NIPUMEHN Ha OBOj METOJ BO OpPOjHU HaBHAYM COCEM
pa3IMyHy U IIKPOKU NONMKa Ha HayKaTa U MHXeHepcTBOTO. Toj HaBucTHHA 00e30eyBa
HEKOJIKY IIOTEHIIUjallHO KOPMCHU aJlaTKM 32 pellaBame Ha Au(epeHyjaJHl i MHTerpal-
HY PaBEHKU U Pa3IMUHM JPYrd NpOOJEeMHM KOHM BKIydyBaaT CHElLMjalnHu (PYHKIMU Off
MaTeMaTHyKaTa (PU3MKa, KaKO M HMBHHUTE NPOILIMpYBama U FeHEPAlU3al¥i Off efHa U
noBeKe MpoMeHIUBY. [N1aBHA €N Ha OBOj TPYA € fa Ce Npe3eHTHpa KYC eJleMEHTapeH
BOBEJEH NpUCTal KOH TeopujaTa Ha (hpak[MUOHO HH(PUHUTE3UMAIHO CMETakhe U HETOBUTE
IPUMEHH, OCOOEHO IIPU Pa3BUBakC¢ Ha pElICHUja HA OJEIHU UHTEPECHU ceMejcTBa Ha
o0MYHM ¥ mapuyjanHu (paknUOHU HHTerpopucepeHnujanHu paBeHku. Mcro Taka, Ke
6upaT MHIUNUPAHU PENEBAHTHU BPCKU HA HEKOM Off PE3YyJITaTUTE IPE3EHTUPAHU BO OBOj
TPyZ CO OHME JOOMEHN BO NOBeKe IOpaHEIIHN TPYOBH Off OBaa 00JIacT.

Knyynn 360poBu: (ppakioHaTHO WH(UHATE3UMAIHO CMETame; Au(epeHIu-
jaTHM paBeHKW;, MHTErPATHU PAaBEHKW; MHTErpOoAn(EepeHIjaTHl PAaBEHKH; CIEIUjaTHu
¢pyHKINT; MaTeMaTuka ¢pusnka; Fuchsian- n He-Fuchsian fudepennnjaninm paBeHKA
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