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ADbstract: In this paper we introduce the notion of (n, n + k)-
semigroups, prove some properties about them, and give an algorith-

mic description of a free (n, n + k)-semigroup with a given basis.
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1. (n, n + K)-SEMIGROUPS

Definition 1. Let n, k € N, and let G# Q. If f: e e k, then we
say that f'is na (n, n + k)-operation, and that the pair (G, /) is an (n, n + k)-
groupoid. An (n, n + k)-groupoid is called (n, n + k)-semigroup, if for each inte-
ger 0 <p <k,

(17 x fx 15" Pyor= (1" x f)e 1.
where 17 x f'x AN is defined by:
17 £ 1%7P(u, v, w) = (U, AV), W),

k,
for each u er,ve G andwe G 7.

Example 1. Letn=1, k=1, G={a, b, c}, and let f : G1 - G2 be de-

fined by: fla) = (b, ¢), fib)=(b,d), fic)=(d, ¢) and fid) = (d, d). From the
definition it follows that:
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(f*x 1) e flay=(f*x1)(b, c)=(b,d, c)=(1" x f)(b,c) =(1' x [) o fla)
(f* 1) o fib)=(f*x 1)(b, d) = (b, d, d) = (1" x f)(b, d) = (1" x f) ° fib)
(f*x 1N efley=(f*1)d, ) =(d, d,c)=(1' x f)(d, c) = (1" x [) o flc)
(f*x 1) e fid) = (f*x 1')d, d) = (d, d, d)= (1" x f)(d, d) = (1' X f) = fd).
This shows that (fx 1) o f = (1' x f) o f. i.e. that (G, f) is a (1, 2)-semigroup.

From now on, let (G, /) be an (n, n + k)-semigroup.

We define /' = £ and 2= (1" x ) o £ G" = G" " **. The condition

that (G, 1) is an (n, n + k)-semigroup can be stated as: (lp X fx lkfp) of=f2,
foreach0<p <k

Proposition 1. For any two integers p, ¢, 0 <p < kand 0 < g < 2k,
(P 21y o= 17 o,

Proof. (a) (17 x 2 x 1Py o f= (17 x (1 P fx 1Py o f) x 157 Py o f
=(1¥ % jk-r x fx 1P x 1"‘1’) o (17 x fx 1"“’) of
= (15 150 (@7 x <1577 o)
= (5 xpx 1902 = (5 15 o (o) = (@ 5 px 1 e (1F ) of
= (15 x (x5 o) o= x 2y of.
(b) In (a) we have proved that
(I px 1902 = (5% Py o= (1P 5 2 x 1Py o

i.e. we have proved the Proposition for g = .

(c) Next, let g # k.
Ifg<k,then 2k—g=k+ (k—q), 0<k—q<k, and

(9% fx 179 o = (1% fx 17 o (195 fx 157 of
=T 1T o (1 x px 1Y) of
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=T (< 1 ey 1T o= (T (5 f oy 1T of
=21 T o= Fx Py o= (1P 21 ) o
Ifg>k, then g=k+(qg—k), 2k—qg<k, 0<g—k<k, and
Ry R B e (Ll R R CCE T SR R B
S0 s 128 R G (19 R 1260 o

=1 @ ey 1T o= 2 o
=Py ef= (P21 ) of o

We deﬁnef3 = (lk X fz) of: ' > G 3k. Then Proposition 1 can be
restated as:

Proposition 1°. For any two integers p, ¢, 0 <p <k and 0<¢q <2k,
(W f 2 1Py op= = (1 1% o p
Next we continue by induction. Let £ '~ Lg"sg e
fined, and let for any two integers p, ¢, 0 <p<k and 0<¢g<(t—- 1)k,
(7 f T P o= T o
Wedeﬁnefj=(1k><fj_1) of : et

k be de-

Proposition 2. For any two integers p,q, 0<p <k and 0< g <tk,
(P x x5 Py op=fx 1" "y opt,

Proof. (a) (1”x f'x 1°77) o f= (17 x (17 Px f' =1 1P) oy <177 o f

(P x 1P T P TPy o (1P fx 1Py o

=T e P o 1Ty o= (P T o

=5 T o (@ xp o) = (@ x s T 1 e (F gy o

= (T ey o= (@5 T oy o= (1 f Y o
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(b) Next, let ¢ = sk +r, where s <t and 0 < r < k. Then:

(A9 x fx 1579 o p 1o (175 1% i 1075 DR kmry ot
:(1r>< (ISkaX 1(tfsfl)k) « lkfr) o((]rxftil y 1k71’) o f)
:((lr>< (ISkaX l(tfsfl)k) y 1kfr) o(]rxft71 y 1kfr)) of

= (@ T e T o
=T o = Y ey

The aim of this paper is to give a description of a free (n, n + k)-
semigroup with a given basis 4.

Example 2. The (1, 2)-semigroup (G, /) in Example 1, is a free (1, 2)-
semigroup with a basis {a}. Let as show this. Let (H, &) be a (1, 2)-semigroup,
y:{a} — H be a given map, a’ = y(a), h(a’) = (b’, ¢’), i(b’) = (x’, ¥’), and
h(c)=(u’,v’). Since (H, h) is a (1, 2)-semigroup, it follows that x’=5b",y = u’
and v’ =c¢’. We extend y to the map ¢ : G — H defined by (b)) =5b", ¢(c) =c¢’
and @(d) = d’. This extension is a (1, 2)-homomorphism, and is unique with this
property.

In the next example we will explain the main idea for the rest of the
paper.

Example 3. Let (G, f) be a (2, 3)-semigroup, X e G2 and f(X) = (a, b,
¢). Then, using Propositons 1 and 2, it follows that:

Sf((a, b)) =(a,u,v), f((b,c))=(u,v,c), f((a,u)=(a,u, w),
S, )=, v, 0), flu,v)=u,w,v), f((a, D))= (a,u,v),
Sf(u, w)) = (u, w, w), fillw,v))=w,w,v),and f[(w, w))=(w, w, w).

. . 2
This shows that for a given X € G, after several steps no new elements

appear in the images f ! (X). In this example, in the images f ! (X) there are at
most 6 elements. In the following paragraph, we will construct elements that

will appear in the images /' ! (X).
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2. CONSTRUCTION 1

Letn, k,s e Nsuchthat (s —2)k<n<(s— 1) k<n+k<sk

Definition 2. Let x be an element from a set A. We define two sets:
D(x) cAxNxNand E(x) c {0} XA XNXN by:

()= (/o) 1<) <5, 1<i<n+2k—jk} =D,
Ex)={0,x,j,))|1<j,1<i<n+jk}=FE.

Definition 3. We define a map ¢: E(x) — D(x) as follows:
For1<t<s:
(x,j.i—jk+k) for jk—k<i<jk,1<j<t
o((0,x,0,i))=4(x,t,i—thk+k) for th—k<i<n+k

(x,t—j,i—th+k)forn+ jk<i<n+ jk+k,1<j<t
Forl<r:

(p((O,x,s,i)) for 1<i<sk
o((0,x,5+7,1)) =< 0((0,x,5,i— jk)) for sk+ jk—k<i<sk+jk,1<j<r
(p((O,x,s,i—rk)) for sk+rk<i<n+sk+rk.

Proposition 3. For any n <i <sk—k,
¢((0,x,5,0) = @((0,x, 5,1+ k).

Proof. Since n <i <sk—k, it follows that n + k<i+ k <sk—k+ k=sk
<n+2k—1<n+2k So, the definition of pforn +jk<i+k <n+jk+k,j=1,
implies that:

o (0,x,s,i+tk)=(xs-1,i+tk—sk+k)=(x, s—1,i—sk+2k).

On the other hand, n <i <sk — k, implies that sk — 2k <n <i <sk —k,
i.e. jk—k<i <jk for j=s— 1. So, the definition of ¢ for s, implies that:

0 (0,x,5,0)=(,s=-1i—-(s—-Dk+ky=(xs-1,i—sk+2k). o
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Proposition 4.
Mo ((0,x,t+ 1,0) =0 ((0, x, t, i), for any 1 <i <k, and
2)o((0,x,t+1,i+k)=0(0,x, ¢ i), foranyn<i<n+tk

Proof. (1) For t <s — 1, since i <tk < (¢ + 1)k, from the definiton we
have that:

0 (0, x,t+1,0)=0x,j,i—jk+ k), jk—k<i<jk,1<j<t<t+1;
0 (0,x,t,0)=(x,j,i—jk+ k), jk—k<i<jk,1<j<t.

For th—k<i<tk,sincet<s—1itfollowsthat th—k<i<(s—1)k<n+k, and so:
o (0,x, t,0)=(ti—-thk+k)=0¢(0,x,t+1,17)).

For t = s, since i < tk = sk, from the definiton we have that:
¢ ((0,x, s+ 1,)=0 (0, x, s, 0)).

Fort>s,t=s+r, for some r > 0. Since i < sk + rk from the definition we have:
©((0,x,t+ 1,0)=0 (0, x, s, 7)), when i < sk, and

¢ ((0,x,t+ 1,0) =0 ((0, x, 5, i —jk)), when sk + jk — k <i < sk + jk,
1<j<r

Similarly,
¢ ((0,x, ¢, 1)) =¢ ((0, x, s, 7)), when i < sk, and

0 ((0,x, ¢ 1)=0(0,x,s,i—jk)), when sk + jk—k<i<sk+jk, 1<j<r.
Hence, forany 1 <i<tk, o ((0,x, ¢+ 1,1)=¢ ((0, x, t, i)).

(2) For t <s—1, since n + k <i + k, from the definition we have that:

o0, x,t+ 1,ith)=(xt+1—j,i+tk—th—k+k),
forn+jk<i+tk<n+jk+k and 1<;j<¢t<¢+1; and

0 ((0,x,t,)=0,t—(G—1),i—th+k),
forn+(G-Dk<i<n+(G-1Dk+k and1 <j—1<¢.

For n <i <n + k, since tk — k <sk — k — k < n from the definition we
have that

0 0,% 1)) =(x, t,i—th+hk)=(c,t—(G—1),i—tk+k).

Fort=s,
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o((0.x,5,i+k))  forn+k<i+k<sk
o((0.x,t+1Li+k))=10((0,x,s5,i+k—k)) forsk+k<i+k<n+sk+k
¢((0.x,5,i+k—k)) forsk <i+k<sk+Fk.

Since for n + k <i+ k <sk, n <i <sk— k, Proposition 3 implies that

¢ ((0,x 5,i+ k) =0 ((0,x s,1)).

Fort>s, t=s+r forsomer > 0. Since n+k<i+k<sk+rk from
the definition we have:

o((0.x,s,i+k))  forn+k<i+k<sk
(p((O,x,t+1,i+k))= [0) ((O,x,s,i—rk)) forsk+rk <i<n+sk+rk
0((0.x,5,i+ k- jk)) for sk + jk—k <i+k < sk+ jk

and 1<j<r+1;

0((0.x,5.7)) forn<i<(s—1)k
(p((O,x,t,i))z (p((O,x,s,i—rk)) forsk+rk <i<n+sk+rk
0((0.x,5,i = (j—1) k)) for sk + jk — 2k <i < sk + jk—k

and 2<j<r+1

and
¢ ((0,x, ¢ 0)=0 (0, x, s, ), for sk — k <i<sk.

Again, for n + k<i+ k <sk, n <i <sk—k, Proposition 3 implies that
@ ((0,x, 1+ 1, i+ k) =0 ((0,x 5, i+k)=0((0,x,s, 7).
Hence, foranyn<i<n-+tk, ¢ (0, x,t+1,i+ k) =0 ((0,x ¢ 0)). O

Often, an element U = (ay, a>, ..., ap, by, by, ..., bq) e A Ta will be de-
noted by U = VW, where V' = (a1, ay, ..., ay) and W= (by, by, ..., by), and to indi-
cate that W e A', we write [W] = .

Definition 4. We will use the following notations.

(1) Foreach 1 <t <s -2
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X, = (6, 4, 1), (x5, 4, 2), oy (3 1, k) € DY,

Y= ((n b, n+ k=t 1), (x, b, n+k—th+2), .. (x, £, n+2k— k) € D

Zo= (06 6 k+ 1), (6 6, k+2), s (x5, 6kt n—th) € D"

(2) Foreacht=s -1

Xo 1= (6 s—1, 1), (6 5—1,2), o, (v, s— 1, n—sk +2k)) e D" ¥ 2F,

Yy 1= (s — Lhk+ 1), (s — 1k +2), . (s — 1, n +2k—sk+ k)) e D" ¥ 72K

G)X=((x, s—1,n—sk+2k+1),..,(xs—1,k)eD* *F"

Y=((x s, 1), (%, 5,2), o (5, 5,0+ 2k —sk)) € D" T 2K 75K,

@) X, = XiXo.. Xs 2X, 1 and Yy =Yy 1Yy 0. VoY1,

(5) For each r > 0, S, = XYXY.. XY € D™ and T, = YXYX..YX € D",

(6) For each 1 <1,

M;= (¢ ((0,x, ¢, 1)), ¢ ((0, x, t, 2)), ....0 ((0, x, t, n + tk))) € D
In Definition 4: X}, Y;, Z; are well defined since for 1 <t <s —2,
(ktn—-tk)—k=n—th>n—(s-2)k=n+2k—sk>1.

Similarly X 1, Yy 1 are well defined since n — sk + 2k <k + 1.
Forn <(s— 1)k, 0 <sk—k—n, and so |X] > 0.
Forn=(s— 1)k, 0 =sk—k—n, and so |X| =0, but then |[X; || = |Y,_1| = k.

From Definition 4 it follows that |[X| = |Y| = n, |[X,X| = |XY,| = sk — k,
and |[XY|=k%.

All the elements in the k — tuples X,, Y;, Z; are distinct, and there are
exactly n + 2k — tk of them.

It follows directly from Definition 4, that each element of D, appears

n+ tk

exactly once in exactly one of X, Yy, Z;, X1, Y1, X, Y.
With the above notations, S, X =Y7,. and |S,| = |To| = 0.

Proposition 5.

(a) For 1 <1<s—2, M,= X\ Xo.. X, \X,ZY,Y, 1..Y>Y).
(b) My = X1X5.. Xy 20Xy 1 XY 1 Yg_2..Y2Y1 = X XY
(©) My =X1X0.. X o X 1 XYXYg 1Y 0. VoY1 = X XYXY.
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(d) For 1 <7, My 4 = X,XYXY.. XYXY, = XS, + 1 XYs = X; YT, 4 1XY,. O

Schematically, some of the M;’s, for s =4, are shown bellow:

X] k X2 2k Zz n, Y2 n+,k Y] n+l2k

Xk X 2K Xy nX Viwmtk Y ni 2k ¥w 3k
T T T

t=4=s
Xi kK X 26X, XY X,V n

|
T

|
=

2k 1, Y wptak

X, kX 2 X mX| Y X, YOOX, Y wE kB, ¥ wsk
T I 1

Proof. (a) and (b) follow directly from the definitions, while (d) fol-
lows from (c¢), the definitions and Proposition 4. For (¢), the definitions and
Proposition 3 imply that:

(@ ((0,x,s,n+1)),0(0,x,s,n+2)),..0¢{0,x s, sk—k)))
=(x,s=1,n—sk+2k+1),...,(x,s—1,sk—k—sk+2k) =X

For sk—k<i <n + k, the definition of ¢ implies that:

(0 ((0,x, 5,8k—k+1)),0((0,x,5,5k—k+1)),..,0(0,x,s,n+k)=Y. O

In the above proposition, (b), (¢) and (d) can be restated as:

for 0 < 7, My_14r= XS,XY, = X XT, Y.

Proposition 6. Let M; = ULV, M, = PLQ, where L & D" and ¢ <q. We
consider the following two cases: t <s—2 andt >s5 — 1.

(@)r<s-2.
In this case, g =¢,P=U,and Q= V.
b)yr=>s—1.

In this case we have the following four possibilities.

(b.1) M;=UL’L;L"’V, such that UL’= X, , L"V=Y,,|L’|>0and |L”| > 0.
Theng=t¢, P= U, and Q = V. In this case, tk < 2n.
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(b.2) M, = UL'L;V"Y,, such that UL’ = X, V= V'Y, and |L’| > 0. Then
P=U,Q=VT,_ Yyand M, = ULV'T, Y.

(b.3) M, = X,U'L\L"V , such that L"V =Y, , U= X, U’ and |L"| >0,
Then 9=V, P=X;S; U and My=X;S; ULV .

(b.4) M, = X,U'LV"Y,, such that U= X,U’, V= V'Y, . Then P = X,P’,
0=Q0%, U =8W, P =8W,V =WT;, Q" =WIT; [W|<k |W|<k,

M, = XS, W LW,TiYs, and My = X SgW LW, T;Y for some p, g, i, j, W1 and W>.
In this case, thk > 2n.

Proof. (a) M; = X1..X; 2, Y;..Y1 and | X1.X| = |Y;..Y1| =t k < (s —2) k<n. This
implies that L has a part of Z,. Since the elements of Z; appear only in M; it fol-
lows that ¢ = ¢. Since the first element of L appears only once in M,, it follows
that |U| = |P|. Hence P= U, and so Q= V.

(b) My =X XTy 41— sYs= ULV, XT; +1 | =sk—k—n+(t+1-s)k=
tk—n > sk—k—mn>0. In this case we have the following four subcases:

(b.1) L has parts of both X, Y, i.e. L=L"L\L”, XT;+1_ =L, |L’]>0,|L”]>0;
(b.2) L hasapartonly of X, i.e. L=L’Ly, XTy+1_s=L\V’, V=V'Y,|L|>0;
(b.3) Lhasapartonly of Yy, i.e. L=L|L",S;+1_X=U'L;, U=X;,U’, |[L”|>0;
(b.4) L has no parts of X;, Y5, i.e. U=X,U’, V=V"Y,, (U’ |20, |V'|=>0.

(b.1) In this case: |L| = n>|XT; 11_ 4| = tk —n, i.e. th <2n; Xy = UL’; and
Y, = L”V. The first element of L’ is in X, the last element of L” is in Y, and
they appear only once. Hence, P=U, Q=V,and M, =ULV =M, ie.q=1.

(b.2) In this case: Xy = UL  and M; = UL’L1V’Ys. The first element of
L’ is in Xy and appears only once. So, P = U and M, = UL'L\Q = X;L1 WY
where Q= WYg and LiW=XTy 415 = XTy 115 Ty = L1V'Ty 4 This implies
that W=V'T,_,and Q=V'T, Y.

(b.3) In this case: Yy =L"V; and M; = X;U’LL"V. The last element of
L” is in ¥y and appears only once. So O = V and My = PL\L"V = X;WL Y
where P = X;Wand WLy = Sy 41— X =8, _ 1St +1-X =S4 _  U’Ly. This implies
that W=S§, U, P=X;S; U and M;=X;S, ULV .
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(b.4) In this case: Sy +1_ s X = XT; +1_ 3= U’LV". Since L has no parts of
X; and Yy, it follows that S +1- s X =XT, +1_ 3= P’LQ’, P=X\P’, Q= Q'Y and
My =X, P’LQ’Ys. Let: U= S, U” and P’ = S, P” where |P”| <k and |U"| < k.
Then, §; +1- s X = ULV’ =S8, ULV, S4+1-5X =PLQO" =S, P’LQ" and
XY=U”"L’=P”L” where L =L’L| = L”L;. Since the first element of L appears
exactly once in X7, it follows that U,=P,=W,, L'=L”, U’=S,W; and P = SpWi.
Hence, M; = X; S, W, LV'Ys and My = X; Sg Wi LQ Y. Next, let: V' = V"'T; and
Q'=Q"T; where |Q”| <k and [V"| <k Then, XT;4+ 1 5= SWILV"T;
XTy+1-5= SpW1 LQ”]}- and YX=N'V"=N"Q” where L=N; N’ =N,. Since
the last element of L appears exactly once in Y.X, it follows that V"= Q"= W,,
N"=N",V'=WT; and Q' = W, T;. Hence, M; = X;S;W\LW>T;Ys and
My=X; Sy Wi LW T; Y.

Inthis case, |L|=n<tk+k—sk+ | X|=tk+k—-sk+sk—k—n=tk—n,
ie.2n<tk.0

Definition 5. Let:
Dl :Dl(x) = {((P ((O,X, Z i+ 1)), - @ ((O9x) f, l+n)))|t2 19 0<i< tk_n} gDna

Dy={(0((0,x, £, i+1),.0((0,x, t, i+tn+th)=>1,0<i<th—n+k} gDnJrk,
We define a map f:{x} « D, — D, by:
fx)=(x,1,1),..,(x,1,n+k)),and
A (0, x, 1, i+ 1)), ..., 0 (0, x, 1, i + n))))

=@ 0, x,t+1,i+1)),..,00,x,t+ 1,i+n+k))).

Proposition 7. The map f is well defined.

Proof. Let L=(p (0, x, £, i + 1)), ..., o ((0, x, ¢, i + n)))

=(@(0,x,¢,j 1)), ... 9 ((0, x, g, j + n)))
and let ¢ <q. We have to show that N=M where:

N=(@ 0, x,t+1,i+ 1), .. 0 (0, x, 1+ 1,i+n+k))),

M=((0,x,g+1,j+1)),...,9(0,x,q+1,j+n+k))).

Let M; = ULV, My = PLQ. Then My = UINV1, My =PiMQ), such
that |U| = |Uy|, |V] = |V1l, |P| = |P1], |Q| = |Q1]. According to the Proposition 6,
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we have to consider only the three cases: (b.2), (b.3) and (b.4), and only for
t>s—1.

(b.2) M;=UL'L; V'Yy, My=UL'L\V'TyYs, UL’=X; and L=L’Ly.
Then, by the definitions, My = ULV'YXY; , and M, = ULV'T, YXY; =

ULV’YXT, ;Y. This and the definitions imply that LV'YX = NR = MR’ for
some R and R’. Since |[N] = [M] it follows that N = M.

(b.3) M; = X;U'Ly LV, My = Xy S ULy L7V, L7V = Y and
L =L, L”. Then, by the definitions, M1 = X; U'L, YXLV = X; U'NV, and
My=X;Sq ULy YXL'V =X S, U'MV. This implies that n = Ly YXL” = M.

(b.4) My =X S, Wi LWL T; Y and My = XSy Wi LW, T;Ys. Then:

M1 =X S, Wi LW T; YXY s = X S, WiILW, YXT; Y = X S, WiNV7 and

My +1= X Sq Wi LWy T YXY = X Sy WILWLYXT; Y = X Sy Wi MO

This and the definitions imply that LW,YX = NR = MR’ for some R and
R’. Since |N| = |[M] it follows that N=M. o

It follows directly from Definition 5 that for any M € D,, M =f(N) for
some N € D; and if M= ULV where L € D" then L Dy gDn.

Proposition 8. For any 0 <p, g <k, (1p><f><1k7p)of= (qufxlkiq)of.

Proof. Let LeD; , and AL)=UNVeD,, for UeD’, NeDy, Ve D' 7.
Then, (17 x fx 1° 77y o A1) = (17 x fx 1* P UNV) = URNYV.

Let

U=(@(0,x, 6, r—=p+1)),...90(0,x ¢ 1),

N=(©@{0,x,tr+1)),..,00,x ¢ r+n))),

V= ((0,x,t, v+n+1)),..,0(0,x t, r—p+n+k)))),

=@ @O0, x,t+1,r+1)),..,0(0,x,t+1,r+n+k))),

U=@@0,x,t+1,r—p+1)),..,0(0,x,t+1,r)),and

Vi=@@{0,x,t+1,r+n+k+1)),.,00,x,t+1,r—p+n+2k))).
Then Uy fiM)V1=(0 (0, x,t+1,r—p+1)),..,0(0,x,t+1,r—p+n+2k))).

Since r —p + n+ k <n + tk, it follows that » <tk — k + p <tk. This, and
Proposition 7, imply that U = Uj.
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Since 0 <r, it follows that n <+ n + 1. This, and Proposition 7, imply
that V'= 1.

Hence, U AN)V = U; f(N)V; and since U; f(N)V; does not depend on
Nit follows that (17 x £ x 1° Py o ALy = (17 xf x 1¥ " %) o AL) forany L e Dy,
e that (1P fx 1577 o= (195 fx 1570 o1 o
Proposition 9. Let L = (¢ ((0,x, ¢t, i + 1)), ..., ¢ ((0, x, ¢, i + n))) and let
fL=({0,x, t,i+1),...000,x, t,i+n+))=UNV=PMQ,

where N, M € D". Then UAN)V = PAM)O.
Proof. It follows from Proposition 8. O

3. CONSTRUCTION 2

Let C be a given nonempty set, ClgCn and p :Cy = ok Tk be such that:
(1) If p(L)= UNV and |[N|=n, then N € Cy;

) If p(L)=UNV=PWQ and |N|=|W|=n then Up(N)V = Pp(W)Q .
This condition is equivalent to the following: for any 0 <p, g <k,

(lpxpxlkfp) op= (qupxlkiq) o p, where 17 x p x 177, p(Cp) - " ak
For each x e C'\C), let D(x), E(x), Di(x), ¢ and f be defined as in the
CONSTRUCTION 1.
Definition 6. Let A be the union of C and of all the D(x), x € '\c.

Let Hic H" be the union of C" and all the Di(x), xeCn\Cl, and let h:H, —)Hn+k
be defined by:

If x € Cy, h(x)=p(x);

If xe d\Cy, hx)=fx)=((x,1,1), ..., (x, 1, n + k));

Proposition 10.

(1) If h(L) = UNV and |N| = n, then N € Hj;

(2) If k(L) = UNV = PWQ and |N| = |W| = n, then Uh(N)V = Ph(W)Q .

This condition is equivalent to the following: for any 0 < p, ¢ <k,
(Pxhx1* 7Py o = (1Ixhx1* "9y o h, where 1Pxhx1* 77 heey) — H'F2E.

Proof. Follows from the Definition 6 and CONSTRUCTION 1. o
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4. CONSTRUCTION OF FREE (n, n + k)-SEMIGROUPS

Let 4 be a nonempty set. Simply by replacing 4 with Ax{0}, we as-
sume that all the new elements introduced in the construction are distinct, and
are not elements of A.

Step 0. Let Ag=A4, By= (Ao)n, and fo :By = (Ao)n ok be the empty
map. Then the map fy satisfies the conditions (1) and (2) from CONSTRUC-
TION 2.

Step 1. We apply CONSTRUCTION 2 for C = Ay, C| = By, and p = fy,
to obtain, H, H; and 4. Define 4 =H, By =H)and f; = h :B| - (Al)n * k. Then,
f1 satisfies (1) and (2) from CONSTRUCTION 2, and moreover, 4y < A1,
By (Ao)n cBiC (Al)n and the restriction of f] on By is equal to f.

Next, we continue by induction. Assume that we have reached

Step m. With this step we have constructed the sets Ay 41 < 4> < ...
C Ayt A, and Boc (40)' € Bic (A1) € Byt € (1) € B < ()"
and the maps f; - B; - (Aj)n " k, for 0 <j <'m such that the maps f; satisfy the
conditions (1) and (2) from CONSTRUCTION 2, and the restriction of f; on B,
is equal to f,. for every 0 <r <j <m.

Step m+1. We apply CONSTRUCTION 2 for C =4, C; =B, and
P = fm, to obtain, H, H; and h. Define 4,,+1 = H, B;+1 = Hi and f,,,+1 = h. Then,
fim+1 By — (Am+1)n+k, satisfies the conditions (1) and (2) from CON-
STRUCTION 2, and moreover, Ay € Ap1, Bm < (Ap)" S Byt < (A1) and
the restriction of f;, + 1 on By, is equal to f;,.

With this procedure, we have constructed sets A4;, B; and maps
£ B> (A" ¥ for 0<j, such that 4; < Aj1, B; < (4)"  Bjs, the restric-

tion of fi41 on B; is equal to f; and the maps f; satisfy the conditions (1) and
(2) from CONSTRUCTION 2.
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Definition 7. Let F(4) = | ] 4; , B= | J B, , O= U(Aj)’”k and let
0<; 0<; 0<;

f* be the union map of all the maps f;.

Proposition 11. (a) B = (F(A))n;
ntk

(b) Oc (F(4)) "; and
() (F(A), ) is a free (n, n + k)-semigroup with basis 4.

Proof. (a) Since for each 0 <j, B; < (Aj)n, it follows that B F(A)n,

and since for each 0 <7, Aj < 4j1 and (Aj)n c Bj+1, it follows that F(A)n c B.
(b) Since for each 0 <j, 4;< F(A) it follows that O < Fi (A)nJrk.
(c) From (a), (b), the definition of f'and Proposition 10, it follows that
(F(A), /) is an (n, n + k)-semigroup.

Let (G, g) be an (n, n + k)-semigroup, and let gt: G —)Gn+tk be the maps
as constructed in Propositions 1 and 2. Let - 4 — G be a map. We will extend
N to an (n, n + k)-homomorphism vy : F(4) — G in a unique way as follows:

Step 0. Let yo=1n: 4o = G.

Step 1. Let z € A; = H = the union of 4 and all the D(x), x (Ao)n\Bo.
If zeAyp, we define y1(z) = yo(z). If z¢ Ao, then zeD(x) for some x € (Ao)n\Bo,
i.e. z=(x, J, i), for some xe(Ao)n\Bo, 1<j <s, 1<i < ntsk — jk. Since xe(Ao)n,
x = (x1, X2, ..., X;;) where all the x;e4¢. Let y = (yo(x1), wo(x2), ..., Wo(x;)) and
let g/ )= (wl,wz,...,wn+jk)eGn+j k. In this case we define yi(z) = wjt 4 +;. This,
together with the definition of ¢ implies that for any #, y1(@(0, x, j, 1)) = wy.

We claim that for any x = (x1, x2, ..., X;) € B1,

g((w1(x1), wi(x2), -, W1(xn)) = (W1(@1), W1(@2)s -, W1(an + )
where (ay, as, ..., a, + k) = f1(x).

Proof of the claim. If x = (x, x, ..., x;,) € (Ao)n, then y1(xy) = wo(x;)

and by definition a; = (x, 1, i), 1 <i<n + k, and y1(a;) = w;, where

Wiy W2, weos Wyik) = & () = g((ho(x1), ho(x2), -..s h0(X))).
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Ifx ¢ (Ao)n, then x € Dy(u) for some u = (uy, u, ..., uy) € (Ao)n\Bo, 1.€.
x=(p((0,u,j,i+ 1)), ..., (0, u,j,i+n)))forsome;j>1,0<i<th—n.
Then, (W1(x1),W1(x2)s--W1(Xn)) = Wik — ke +i +1> Wik — k+ i +25++» Wik — k + n)> Where
(W1, W2y ees W48 = & (W001), Wo(12)s ey Woltn).
So, g((Wi1(x1),w1(x2)s--W1(xXn)) = (Vjk — k+ i +1:Vjk — k + i +25++> Vjk — k +n +k)>» Where

i +1
1 V2 e Vit i+ ) =87 ((Wolu1), Wo(u2), ..., Wolutn))-
Again by the definitions, f£;(x) = (¢((0, u,j + 1, i+ 1)), ..., 9((0, u, j, i + n + k)))

and \Vl((P(O» uaj + 19 t)) =Vi= Wl(at) for ar= (p((O’ uaj + 19 i+ t)) Hence:
g((w1(x1), wi(x2), s W1(xn)) = (Wi(a@1), W1(a2), -, W1(an + 1))

where (a1, az, ..., ay + ) = f1(x).

This implies the claim.

Next we continue by induction. Assume that we have reached Step m.

Step m. With this step we have defined a map ,, : 4,, = G, such that
its restriction to any 4; is equal to y; and such that for any x = (x1, x2, .., X,,) €Bys

g(Wm(x1), Wi(xX2), «os Win(xn)) = (Wm(@1), Wim(a2), -, Wi(an + k)

where (a1, a2, ..., ap + k) = fn(x).

Step m+1. Let zeA,, 11 = H = A,, union all the D(x), xe(4,,)"\ By,. If
z€A,y,, we define y,,+1(2) = Wu(2). If zg¢A4,,, then ze D(x) for some xe(Am)n\Bm,
ie.z = (x,J, i), for some x € (Am)n\Bm, 1<j<s, 1 <i<n+sk—jk Since

XE(Am)n’ X :(xlax2a'~'axn) Where all the XIEAI’H' Lety :(\Vm(xl)a\llm(x2)a~--N’m(xn))
and g/(.y) = (Wla W2, ...y Wy +]k) € Gn ! tk' We define \Verl(Z) = ij—k+ i

By the definition, the restriction of ,,,+1 to A4, is equal to yy,.
We claim that for any x = (x1, x2, ..., X;) € By+1,

Z(Wm+1(x1), Winr1(x2)5 <o Wint1 (X)) = (Win+1(@1), Win+1(a2)5 s Win+1(@n + 1))

where (ay, a2, ..., ay + k) = fr+1(X).
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Proof of the claim. If x = (x1, x2, ..., x;) € B, < (Am)n, then by induc-
tion and Step m: y,,+1(x;) = Wi (xp), fir1(x) =fm(x) = (ay, az, ..., ay + 1), and
(Wm1(X1), Win+1(x2), ooy Wint1(xn)) = gU(Wm(X1)s Win(X2), .., Win(x))

= (Wm(a1), Wm(a2), s Wm(an + 1)) = Wm+1(@1), Win+1(a2), <o Win1(an + 1))
All this implies the claim in this case.

If x =(x1, x2, .., X)) € (Am)n\Bm, then y;,,+1(x;) = Wu(x;) and by defini-
tion a; = (x, 1, 1), 1 <i<n+k, and y,,+1(a;) = w;, where

W W2, oo W+ ) =€ () = & (Wi (1), Wi (2), s Wi (30))-

All this implies the claim in this case.

Ifx & (4,,)", then xeD(u) for some u = (u1, z, ..., ty) € (Ay) By, i.c.
x=(o((0, u, j, i+ 1)), ..., o((0, u, j, i + n))) for some j > 1, 0 < i < tk—n. Then,
(Wi 1(00)s Wint1062)s ooy Wit 1(0n)) = Wik — ke + i+ 1> Wik — k + i+ 25 -0 Wik —k + n)s
where (W1, 2, . W + 1) = & (Win(101), Win(142), .oy Win(uan)). So,

S(Wnr1(X1)s Wi+ 1(32)5 wos Wit 1 (X)) = (Vi — k+ i +15 Vik— k+ i 42505 Vik—k +n + k)

where (v, V2, v, Va4 jk+ k) = & (W), Y102), .oy Wlttn)). By the defi-
nitions, f;,+1(x) = (@((0, u,j + 1,i+ 1)), ..., (0, u, j, i + n + k))) and
Vi1 (@0, u, j + 1, 1)) = v, = yy(ay) for a; = o((0, u, j + 1, i +t)). Hence:
(Wm+1001), Wit 10x2), ooy Wint1 (X)) = (Win+1(a1), Win+1(a2), s Wint1(an + 1))
where (a1, az, ..., @y + k) =f1(x).

This implies the claim.

This completes the induction. We define the map  to be the union of

all the maps y,,. From its definition it follows that v is an (n, n+k)-homomor-
phism and it is unique with these properties.

All this shows that (F(4), f) is a free (n, n+k)-semigroup with basis 4. O

Example 4. Let n =1, k= 2.Then s = 2, since
(s-2)k=2-22<1=n<Q2-12=(6-1k<1t2=n+k<4=sk

Let 4 = {a}. Then D = D(x) = {(a, 1, 1), (a, 1, 2), (a, 1, 3), (a, 2, 1)}
and D, =D =D". So F(A) = {a, b, ¢, d, e}, where b = (a, 1, 1), c = (a, 1, 2),
d=(a, 1,3),e=(a,2,1),and f: F(4) = (F(4)’ is defined by:

Aa)=(b, ¢, d), fib)=(b ¢, e), fic)=(c ec), fid)=(e c d), fle)=(e c e).
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Pesnume

CIOBOJHMU (n, n + k)-MOJYTPYIIN

Bo 0BOj Tpyd BOBelieH € MOUMOT 3a (1, n + k)-TIOJAYrpynu, TOKaXKaHU ce HEKOU
CBOjCTBA 3a HWB U € JajicH aJTOPUTaMCKH ONMUC Ha cIobogHu (n, n + k)-MONyrpymu co
nameHa Oasza.

Knyunn 360posn: (n, n + k)-nonyrpynu; cnodopuu (n, n + k)-moixyrpynu
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