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A b s t r a c t: In this paper we introduce the notion of (n, n + k)-
semigroups, prove some properties about them, and give an algorith-
mic description of a free (n, n + k)-semigroup with a given basis. 
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1. (n, n + k)-SEMIGROUPS 

Definition 1. Let n, k ∈ ` , and let G ≠ ∅. If f : Gn → Gn + k, then we 
say that f is na (n, n + k)-operation, and that the pair (G, f ) is an (n, n + k)-
groupoid. An (n, n + k)-groupoid is called (n, n + k)-semigroup, if for each inte-
ger 0 ≤ p ≤ k,  
 (1p × f × 1k – p)°f = (1k × f )° f,                         
 

where  1p × f × 1k – p : Gn + k → Gn + 2k  is defined by:  
 

1p × f × 1k – p(u, v, w) = (u, f(v), w),  
 

for each u ∈ Gp, v ∈ Gn, and w ∈ Gk – p. 

Example 1. Let n = 1, k = 1, G = {a, b, c}, and let f : G1 → G2 be de-
fined by: f(a) = (b, c),  f(b) = (b, d),  f(c) = (d, c) and  f(d) = (d, d). From the 
definition it follows that: 
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( f × 11) ° f(a) = ( f × 11)(b, c) = (b, d, c) = (11 × f )(b, c) = (11 × f ) ° f(a) 

( f × 11) ° f(b) = ( f × 11)(b, d) = (b, d, d) = (11 × f )(b, d) = (11 × f ) ° f(b) 

( f × 11) ° f(c) = ( f × 11)(d, c) = (d, d, c) = (11 × f )(d, c) = (11 × f ) ° f(c) 

( f × 11) ° f(d) = ( f × 11)(d, d) = (d, d, d) = (11 × f )(d, d) = (11 × f ) ° f(d). 

This shows that (f × 11) ° f  = (11 × f ) ° f, i.e. that (G, f ) is a (1, 2)-semigroup. 

From now on, let (G, f ) be an (n, n + k)-semigroup. 

We define f 1 = f, and f 2 = (1k × f ) ° f : Gn → Gn  ++  2k. The condition 

that (G, f ) is an (n, n + k)-semigroup can be stated as: (1p × f × 1k – p) ° f = f 2, 
for each 0 ≤ p ≤ k. 

Proposition 1. For any two integers p, q, 0 ≤ p ≤ k and 0 ≤ q ≤ 2k,  

 (1p × f 2 × 1k – p) ° f = (1q × f × 12k – q) ° f 2. 

 Proof. (a) (1p × f 2 × 1k – p) ° f = (1p × ((1k – p × f × 1p) ° f ) × 1k – p) ° f 

= (1p × 1k – p × f × 1p × 1k – p) ° (1p × f × 1k – p) ° f  

= (1k × f × 1k) ° ((1p × f × 1k – p) ° f ) 

= (1k × f × 1k) ° f 2 = (1k × f × 1k) ° ((1k × f) ° f ) = ((1k × f × 1k) ° (1k × f )) ° f   

= (1k × ((f × 1k) ° f )) ° f = (1k × f 2) ° f . 

(b) In (a) we have proved that  

(1k × f × 1k) ° f 2 = (1k × f 2) ° f = (1p × f 2 × 1k – p) ° f, 
i.e. we have proved the Proposition for q = k. 

(c) Next, let q ≠ k. 
If q < k, then  2k – q = k + (k – q),  0 < k – q < k,  and 

  (1q × f × 12k ––  q) ° f 2 = (1q × f × 12k ––  q) ° (1q × f × 1k ––  q) ° f   

   = (1q × f × 1k × 1k ––  q) ° (1q × f × 1k ––  q) ° f 
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 = (1q × ((f × 1k) ° f ) × 1k ––  q) ° f = (1q × ((1k × f) ° f ) × 1k ––  q) ° f 

 = (1q × f 2 × 1k ––  q) ° f = (1k × f 2) ° f = (1p × f  2 × 1k ––  p) ° f . 

If q > k,  then  q = k + (q – k),  2k – q < k,  0 < q – k < k,  and 

  (1q × f × 12k ––  q) ° f 2 = (1q × f × 12k ––  q) ° (1q ––  k × f × 12k ––  q) ° f  

 = (1q ––  k × 1k × f × 12q ––  k) ° (1q ––  k × f × 12k ––  q) ° f  

 = (1q ––  k × ((1k × f) ° f ) × 12k ––  q) ° f = (1q ––  k × f 2 × 12k ––  q) ° f 

 = (1k × f  2) ° f = (1p × f 2 × 1k ––  p) ° f.  □ 
 

We define f 3 = (1k × f 2) ° f : Gn → Gn ++  3k. Then Proposition 1 can be 
restated as:  

 

Proposition 1’. For any two integers p, q, 0 ≤ p ≤ k  and  0 ≤ q ≤ 2k,  

(1p × f  2 × 1k ––  p) ° f = f 3 = (1q × f × 12k ––  q) ° f  2. □ 
  

Next we continue by induction. Let f  t ––  1: Gn → Gn ++  (t ––  1)k be de-
fined, and let for any two integers p, q,  0 ≤ p ≤ k  and  0 ≤ q ≤ (t – 1) k,  

(1p × f 
t ––  1 × 1k ––  p) ° f = (1q × f × 1(t ––  1)k ––  q) ° f t ––  1 . 

We define f t = (1k × f t ––  1) ° f : Gn → Gn +  tk . 
 

Proposition 2. For any two integers p, q,  0 ≤ p ≤ k  and  0 ≤ q ≤ t k,  

(1p × f  t × 1k ––  p) ° f = (1q × f × 1 t k  – q) ° f  t . 

 Proof. (a) (1p× f t × 1k ––  p) ° f = (1p × (1k ––  p× f t ––  1 × 1p) ° f ) ×1k ––  p) ° f 

= (1p × 1k ––  p × f t ––  1 × 1p × 1k ––  p) ° (1p × f × 1k ––  p) ° f  

= (1k × f  t ––  1 × 1k) ° (1p × f × 1k ––  p) ° f = (1k × f t ––  1 × 1k) ° f 2  

 = (1k × f  t ––1 × 1k) ° ((1k × f) ° f ) = ((1k × f  t ––  1 × 1k) ° (1k × f )) ° f  

 = (1k × (( f  t ––  1× 1k) ° f )) ° f = (1k × ((1k × f t ––  1) ° f )) ° f = (1k × f  t) ° f.  
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  (b) Next, let q = sk + r, where s < t and 0 ≤ r ≤ k. Then: 

  (1q × f × 1tk ––  q) ° f  t = (1r × 1sk × f × 1(t ––  s––  1)k × 1k ––  r) ° f  t 

 = (1r × (1sk × f × 1(t ––  s ––  1)k ) × 1k ––  r ) ° ((1r × f  t ––  1 × 1k ––  r ) ° f ) 

  = ((1r × (1sk × f × 1(t ––  s ––  1)k ) × 1k ––  r ) ° (1r × f  t ––  1 × 1k ––  r )) ° f 

 = (1r × ((1sk × f × 1( t ––  s ––  1)k ) ° f  t ––  1) × 1k ––  r ) ° f  

= (1r × f  t × 1k ––  r ) ° f  = (1k × f  t) ° f  

The aim of this paper is to give a description of a free (n, n + k)-
semigroup with a given basis A.  

Example 2. The (1, 2)-semigroup (G, f ) in Example 1, is a free (1, 2)-
semigroup with a basis {a}. Let as show this. Let (H, h) be a (1, 2)-semigroup, 
ψ:{a} → H be a given map, a’ = ψ(a), h(a’) = (b’, c’), h(b’) = (x’, y’), and 
h(c’) = (u’, v’). Since (H, h) is a (1, 2)-semigroup, it follows that x’ = b’, y’ = u’ 
and v’ = c’. We extend ψ to the map ϕ : G → H defined by ϕ(b) = b’, ϕ(c) = c’ 
and ϕ(d) = d’. This extension is a (1, 2)-homomorphism, and is unique with this 
property. 

In the next example we will explain the main idea for the rest of the 
paper. 

Example 3. Let (G, f) be a (2, 3)-semigroup, x∈ G2 and  f(x) = (a, b, 
c). Then, using Propositons 1 and 2, it follows that:  

f ((a, b)) = (a, u, v),   f ((b, c)) = (u, v, c),  f ((a, u)) = (a, u, w),  

 f ((v, c)) = (w, v, c),   f((u, v)) = (u, w, v),  f ((a, b)) = (a, u, v),  

f((u, w)) = (u, w, w),  f((w, v)) = (w, w, v), and  f((w, w)) = (w, w, w). 

This shows that for a given x ∈ G2, after several steps no new elements 
appear in the images f t (x). In this example, in the images f t (x) there are at 
most 6 elements. In the following paragraph, we will construct elements that 
will appear in the images f t (x). 
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2. CONSTRUCTION 1 

Let n, k, s ∈  such that (s – 2) k < n ≤ (s – 1) k < n + k ≤ sk. 

Definition 2. Let x be an element from a set A. We define two sets: 
D(x) ⊆ A ×  ×  and E(x) ⊆ {0} × A ×  ×   by: 

D(x) = {(x, j, i) | 1 ≤ j ≤ s, 1 ≤ i ≤ n + 2k – jk } = D,  
E(x) = {(0, x, j, i) | 1 ≤ j, 1 ≤ i ≤ n + jk } = E. 

Definition 3. We define a map ϕ: E(x) → D(x) as follows: 
For 1 ≤ t ≤ s: 

( )( )
( )
( )
( )

, , for , 1

φ 0, , , , , for

, , for , 1

x j i jk k jk k i jk j t

x t i x t i tk k tk k i n k

x t j i tk k n jk i n jk k j t

− + − < ≤ ≤ <

= − + − < ≤ +

− − + + < ≤ + + ≤ <

⎧
⎪
⎨
⎪
⎩

 

  For 1 ≤ r: 

( )( )
( )( )
( )( )
( )( )

φ 0, , , for 1

φ 0, , , φ 0, , , for ,1

φ 0, , ,  for  .

x s i i sk

x s r i x s i jk sk jk k i sk jk j r

x s i rk sk rk i n sk rk

≤ ≤

+ = − + − < ≤ + ≤ ≤

− + < ≤ + +

⎧
⎪⎪
⎨
⎪
⎪⎩

 

Proposition 3. For any n < i ≤ sk – k,  
ϕ ((0, x, s, i)) = ϕ ((0, x, s, i + k)). 

Proof. Since n < i ≤ sk – k, it follows that n + k < i + k ≤ sk – k + k = sk 
≤ n + 2k – 1 < n + 2k. So, the definition of ϕ for n + jk < i + k ≤ n + jk + k, j = 1, 
implies that: 

ϕ ((0, x, s, i + k)) = (x, s – 1, i + k – sk + k) = (x, s – 1, i – sk + 2k). 

On the other hand, n < i ≤ sk – k, implies that sk – 2k < n < i ≤ sk – k, 
i.e. jk – k < i ≤ jk for j = s – 1. So, the definition of ϕ for s, implies that: 

ϕ ((0, x, s, i)) = (x, s – 1, i – (s – 1) k + k) = (x, s – 1, i – sk + 2k). □ 



40 D. Dimovski 

Contributions, Sec. Math. Tech. Sci., XXX, 1 – 2 (2009), pp. 35–52 

Proposition 4. 
(1) ϕ ((0, x, t + 1, i)) = ϕ ((0, x, t, i)), for any 1 ≤ i < tk, and 
(2) ϕ ((0, x, t + 1, i + k)) = ϕ ((0, x, t, i)), for any n < i ≤ n + tk. 

Proof. (1) For t ≤ s – 1, since i ≤ tk < (t + 1)k, from the definiton we 
have that: 

ϕ ((0, x, t + 1, i)) = (x, j, i – jk + k), jk – k < i ≤ jk, 1 ≤ j ≤ t < t + 1; 
ϕ ((0, x, t, i)) = (x, j, i – jk + k)), jk – k < i ≤ jk, 1 ≤ j < t. 

For tk – k < i ≤ tk, since t ≤ s – 1 it follows that tk – k < i ≤ (s – 1) k ≤ n + k, and so: 
ϕ ((0, x, t, i)) = (x, t, i – tk + k)) = ϕ ((0, x, t + 1, i)). 

For t = s, since i ≤ tk = sk, from the definiton we have that: 
ϕ ((0, x, s + 1, i)) = ϕ ((0, x, s, i)). 

For t > s, t = s + r, for some r > 0. Since i ≤ sk + rk from the definition we have: 
ϕ ((0, x, t + 1, i)) = ϕ ((0, x, s, i)), when i ≤ sk, and 
ϕ ((0, x, t + 1, i)) = ϕ ((0, x, s, i – jk)), when sk + jk – k < i ≤ sk + jk,  

1 ≤ j ≤ r. 
Similarly,  

ϕ ((0, x, t, i)) = ϕ ((0, x, s, i)), when i ≤ sk, and 

ϕ ((0, x, t, i)) = ϕ ((0, x, s, i – jk)), when sk + jk – k < i ≤ sk + jk, 1 ≤ j ≤ r. 

Hence, for any 1 ≤ i < tk,  ϕ ((0, x, t + 1, i)) = ϕ ((0, x, t, i)). 

(2) For t ≤ s – 1, since n + k < i + k, from the definition we have that: 
ϕ ((0, x, t + 1, i + k)) = (x, t + 1 – j, i + k – tk – k + k),  

for n + jk < i + k ≤ n + jk + k,  and  1 ≤ j ≤ t < t + 1;    and 
  ϕ ((0, x, t, i)) = (x, t – (j – 1), i – tk + k),  
for n + (j – 1) k < i ≤ n + (j – 1) k + k,  and 1 ≤ j – 1 < t . 

For n < i ≤ n + k, since tk – k ≤ sk – k – k < n from the definition we 
have that  

ϕ ((0, x, t, i)) = (x, t, i – tk + k) = (x, t – (j – 1), i – tk + k). 

For t = s,  
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( )( )
( )( )
( )( )
( )( )

φ 0, , , for 

φ 0, , 1, φ 0, , , for 

φ 0, , , for .

x s i k n k i k sk

x t i k x s i k k sk k i k n sk k

x s i k k sk i k sk k

+ + < + ≤

+ + = + − + < + ≤ + +

+ − < + ≤ +

⎧
⎪⎪
⎨
⎪
⎪⎩

 

Since for n + k < i + k ≤ sk, n < i ≤ sk – k, Proposition 3 implies that  

ϕ ((0, x, s, i + k)) = ϕ ((0, x, s, i)). 

For t > s,  t = s + r  for some r > 0. Since  n + k < i + k ≤ sk + rk   from 
the definition we have:  

( )( )
( )( )
( )( )
( )( )

φ 0, , , for 

φ 0, , 1, φ 0, , , for 

φ 0, , , for 

and 1 1;

x s i k n k i k sk

x t i k x s i rk sk rk i n sk rk

x s i k jk sk jk k i k sk jk

j r

+ + < + ≤

+ + = − + < ≤ + +

+ − + − < + ≤ +

≤ ≤ +

⎧
⎪⎪
⎨
⎪
⎪⎩

 

 

( )( )
( )( )
( )( )
( )( )

φ 0, , , for ( 1)

φ 0, , , φ 0, , , for 

φ 0, , , ( 1) for 2

and 2 1

x s i n i s k

x t i x s i rk sk rk i n sk rk

x s i j k sk jk k i sk jk k

j r

< ≤ −

= − + < ≤ + +

− − + − < ≤ + −

≤ ≤ +

⎧
⎪⎪
⎨
⎪
⎪⎩

 

and 
ϕ ((0, x, t, i)) = ϕ ((0, x, s, i)), for sk – k < i ≤ sk. 

Again, for n + k < i + k ≤ sk,  n < i ≤ sk – k, Proposition 3 implies that  

ϕ ((0, x, t + 1, i + k)) = ϕ ((0, x, s, i + k)) = ϕ ((0, x, s, i)). 

Hence, for any n < i ≤ n + tk,  ϕ ((0, x, t + 1, i + k)) = ϕ ((0, x, t, i)). □ 

Often, an element U = (a1, a2, ..., ap, b1, b2, ..., bq) ∈ Ap ++  q will be de-
noted by U = VW, where V = (a1, a2, ..., ap) and W = (b1, b2, ..., bq), and to indi-
cate that W ∈ Ai, we write |W| = i. 

Definition 4. We will use the following notations.  
(1) For each 1 ≤ t ≤ s – 2  
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Xt = ((x, t, 1), (x, t, 2), ..., (x, t, k)) ∈ Dk; 

Yt = ((x, t, n + k – tk + 1), (x, t, n + k – tk + 2), ..., (x, t, n + 2k – tk)) ∈ Dk; 

Zt = ((x, t, k + 1), (x, t, k + 2), ..., (x, t, k + n – tk)) ∈ Dn – tk. 

(2) For each t = s – 1 

Xs–1= ((x, s – 1, 1), (x, s – 1, 2), ..., (x, s – 1, n – sk + 2k)) ∈ Dn – sk + 2k ; 

Ys–1= ((x,s – 1,k + 1), (x,s – 1,k + 2), ..., (x,s – 1, n +2k– sk + k)) ∈ Dn  – sk + 2k. 

(3) X = ((x, s – 1, n – sk + 2k + 1), ..., (x, s – 1, k)) ∈ Dsk  – k  – n. 

Y = ((x, s, 1), (x, s, 2), ..., (x, s, n + 2k – sk)) ∈ Dn ++  2k ––  sk. 
(4) Xs = X1X2...Xs–2Xs–1  and   Ys = Ys–1Ys–2...Y2Y1. 

(5) For each r ≥ 0, Sr = XYXY...XY ∈ Drk and Tr = YXYX...YX ∈ Drk. 
(6) For each 1 ≤ t, 

Mt = (ϕ ((0, x, t, 1)), ϕ ((0, x, t, 2)), ....ϕ ((0, x, t, n + tk))) ∈ Dn ++  tk. 

In Definition 4: Xt, Yt, Zt are well defined since for 1 ≤ t ≤ s – 2,  

(k + n – tk) – k = n – tk ≥ n – (s – 2)k = n + 2k – sk ≥ 1. 

Similarly Xs–1, Ys–1 are well defined since n – sk + 2k < k + 1. 
For n < (s – 1)k, 0 < sk – k – n, and so |X| > 0.  

For n = (s – 1)k, 0 = sk – k – n, and so |X| = 0, but then |Xs–1| = |Ys–1| = k.  

From Definition 4 it follows that |Xs| = |Ys| = n, |XsX| = |XYs| = sk – k, 
and |XY| = k. 

All the elements in the k – tuples Xt, Yt, Zt are distinct, and there are 
exactly n + 2k – tk of them. 

It follows directly from Definition 4, that each element of D, appears 
exactly once in exactly one of Xt, Yt, Zt, Xs–1, Ys–1, X, Y.  

With the above notations, r rS X YT=  and |S0| = |T0| = 0. 

Proposition 5.  

(a) For 1 ≤ t ≤ s – 2, Mt = X1X2...Xt – 1XtZtYtYt – 1...Y2Y1. 

 (b) Ms–1 = X1X2...Xs – 2Xs – 1XYs – 1Ys – 2...Y2Y1 = Xs XYs. 

(c) Ms = X1X2...Xs–2Xs – 1XYXYs–1Ys – 2...Y2Y1 = XsXYXYs. 
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(d) For 1 ≤ r, Ms + r = XsXYXY...XYXYs = XsSr + 1XYs = XsYTr + 1XYs.  □ 

Schematically, some of the Mt ’s,  for s = 4, are shown bellow:  
 

t = 2 
      X1      k      X2    2k   Z2   n     Y2     n + k   Y1   n + 2k  
  
t = 3 = s – 1 
      X1      k      X2    2k   X3      n  X   Y3   n + k  Y2   n + 2k  Y1   n + 3k 
  
t = 4 = s 
       X1     k      X2      2k   X3      n  X     Y       X    Y3    n + 2k  Y2           Y1       n + 4k 
  
t = 5 = s + 1 
      X1      k      X2    2k   X3      n  X      Y       X    Y        X    Y3       n + 3k Y2        Y1     n + 5k 
 

 

Proof. (a) and (b) follow directly from the definitions, while (d) fol-
lows from (c), the definitions and Proposition 4. For (c), the definitions and 
Proposition 3 imply that: 

(ϕ ((0, x, s, n + 1)), ϕ ((0, x, s, n + 2)), ..., ϕ ((0, x, s, sk – k))) 
 = ((x, s – 1, n – sk + 2k + 1), ..., (x, s – 1, sk – k – sk + 2k)) = X. 
For sk – k < i ≤ n + k, the definition of ϕ implies that: 
(ϕ ((0, x, s, sk – k + 1)), ϕ ((0, x, s, sk – k + 1)), ..., ϕ ((0, x, s, n + k)) = Y.  □ 

In the above proposition, (b), (c) and (d) can be restated as: 

for 0 ≤ r, Ms–1+r = XsSrXYs = XsXTrYs. 

Proposition 6. Let Mt = ULV, Mq = PLQ, where L ∈ Dn and t ≤ q. We 
consider the following two cases: t ≤ s – 2 and t ≥ s – 1.  

(a) t ≤ s – 2. 
In this case, q = t, P = U, and Q = V.  
(b) t ≥ s – 1. 
 In this case we have the following four possibilities. 

(b.1) Mt = UL’L1L”V, such that UL’= Xs , L”V= Ys , |L’| > 0 and |L”| > 0. 
Then q = t, P = U, and Q = V. In this case, tk < 2n. 
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(b.2) Mt = UL’L1V’Ys, such that UL’ = Xs , V = V’Ys and |L’| > 0. Then  
P = U, Q = V’Tq – tYs and Mq = ULV’Tq–tYs . 

(b.3) Mt = XsU’L1L”V , such that L”V = Ys , U = Xs U’ and  |L”| > 0. 
Then Q = V, P = Xs Sq – t U’ and Mq = Xs Sq – t U’LV . 

(b.4) Mt = XsU’LV’Ys , such that U = XsU’,  V = V’Ys .  Then  P     = XsP’, 
Q = Q’Ys, U’ = SrW1, P’ = SpW1, V’ = W2Ti, Q’ = W2Tj,  |W1| < k,  |W2| < k ,    
Mt = XsSrW1LW2TiYs, and Mq = XsSqW1LW2TjYs for some p, q, i, j, W1 and W2. 
In this case, tk ≥ 2n. 

Proof. (a) Mt = X1...Xt Zt Yt...Y1 and |X1...Xt| = |Yt...Y1| = t k ≤ (s – 2) k < n. This 
implies that L has a part of Zt. Since the elements of Zt appear only in Mt it fol-
lows that q = t. Since the first element of L appears only once in Mt, it follows 
that |U| = |P|. Hence P = U, and so Q = V. 

(b) Mt = XsXTt + 1 – sYs = ULV, |XTt + 1 – s| = sk – k – n + (t + 1 – s) k = 
tk – n ≥ sk – k – n ≥ 0. In this case we have the following four subcases: 

(b.1) L has parts of both Xs, Ys, i.e. L =L’L1L”,  XTt +1– s =L1, |L’| > 0, |L”| > 0;  
(b.2) L has a part only of Xs, i.e. L = L’L1,  XTt +1– s = L1V’,  V = V’Ys, |L’| > 0; 

(b.3) L has a part only of Ys, i.e. L = L1L”, St +1– sX = U’L1, U = Xs U’, |L”| > 0; 

(b.4) L has no parts of Xs, Ys, i.e. U = Xs U’,  V = V’Ys,  |U’| ≥ 0,  |V’| ≥ 0. 

(b.1) In this case: |L| = n>|XTt +1– s| = tk – n, i.e. tk < 2n; Xs = UL’; and 
Ys = L”V. The first element of L’ is in Xs , the last element of L” is in Ys and 
they appear only once. Hence,  P = U, Q = V, and  Mq = ULV = Mt, i.e. q = t. 

(b.2) In this case: Xs = UL’ and Mt = UL’L1V’Ys.  The first element of 
L’ is in Xs and appears only once. So, P = U and Mq = UL’L1Q = XsL1WYs 
where Q = WYs  and L1W = XTq +1– s = XTt +1– s Tq– t = L1V’Tq– t.  This implies 
that  W = V’Tq – t  and  Q = V’Tq – t Ys. 

(b.3) In this case: Ys = L”V; and Mt = XsU’L1L”V. The last element of 
L” is in Ys and appears only once. So Q = V and Mq = PL1L”V = XsWL1Ys 
where P = XsW and WL1 = Sq +1– sX = Sq – t St +1–sX = Sq – t U’L1. This implies 
that W = Sq – t U’,  P = Xs Sq – tU’ and Mq = Xs Sq – t U’LV . 
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(b.4) In this case: St +1– s X = XTt +1– s = U’LV’. Since L has no parts of 
Xs and Ys, it follows that Sq +1– s X = XTq +1– s = P’LQ’, P = XsP’, Q = Q’Ys and 
Mq = Xs P’LQ’Ys. Let: U’ = Sr U” and P’ = Sp P” where |P”| < k and |U”| < k. 
Then, St +1– s X  = U’LV’ = Sr U”LV’,  Sq +1– s X  = P’LQ’ = Sp P”LQ’  and     
XY = U”L’ = P”L” where L = L’L1 = L”L2. Since the first element of L appears 
exactly once in XY, it follows that U1=P1=W1,  L’=L”,  U’=SrW1 and  P = SpW1. 
Hence, Mt = Xs Sr W1 LV’Ys and Mq = Xs Sq W1 LQ”Ys. Next, let: V’ = V”Ti and 
Q’ = Q”Tj  where  |Q”| < k  and   |V”| < k.  Then,   XTt + 1– s =  SrW1LV”Ti,     
XTq +1– s = SpW1 LQ”Tj  and  YX = N’V” = N”Q” where L = N1 N’ = N2 . Since 
the last element of L appears exactly once in YX, it follows that  V” = Q” =  W2,   
N’ = N”, V’ = W2Ti  and  Q’ = W2 Tj.   Hence, Mt = XsSrW1LW2TiYs and  
Mq = Xs Sp W1 LW2 Tj Ys.   

In this case, |L| = n ≤ tk + k – sk + |X| = tk + k – sk + sk – k – n = tk – n, 
i.e. 2n ≤ tk. □ 

Definition 5. Let: 

D1 = D1(x) = {(ϕ ((0, x, t, i + 1)), ..., ϕ ((0, x, t, i + n)))|t ≥ 1, 0 ≤ i < tk – n} ⊆ Dn, 

D2 = {(ϕ ((0, x, t, i + 1)), ..., ϕ ((0, x, t, i + n + k)))|t ≥ 1, 0 ≤ i < tk – n + k} ⊆ Dn + k. 
We define a map f:{x} ∪ D1 → D2 by: 
f(x) = ((x, 1, 1), ..., (x, 1, n + k)), and  
f((ϕ ((0, x, t, i + 1)), ..., ϕ ((0, x, t, i + n)))) 
 = (ϕ ((0, x, t + 1, i + 1)), ..., ϕ ((0, x, t + 1, i + n + k))). 

Proposition 7. The map  f  is well defined. 
Proof. Let L = (ϕ ((0, x, t, i + 1)), ..., ϕ ((0, x, t, i + n))) 
 = (ϕ ((0, x, q, j + 1)), ..., ϕ ((0, x, q, j + n))) 

and let t ≤ q. We have to show that N = M  where: 
N = (ϕ ((0, x, t + 1, i + 1)), ..., ϕ ((0, x, t + 1, i + n + k))),  
M = (ϕ ((0, x, q + 1, j + 1)), ..., ϕ ((0, x, q + 1, j + n + k))). 

Let Mt = ULV, Mq = PLQ.  Then  Mt+1 = U1NV1,  Mq+1 = P1MQ1,  such 
that |U| = |U1|, |V| = |V1|, |P| = |P1|, |Q| = |Q1|. According to the Proposition 6, 
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we have to consider only the three cases: (b.2), (b.3) and (b.4), and only for  
t ≥ s – 1.  

(b.2) Mt = UL’L1 V’Ys ,  Mq = UL’L1V’Tq–tYs ,  UL’ = Xs  and L = L’L1. 
Then, by the definitions, Mt+1 = ULV’YXYs ,  and Mq = ULV’Tq–tYXYs = 
ULV’YXTq–tYs. This and the definitions imply that LV’YX = NR = MR’ for 
some R and R’. Since |N| = |M|  it  follows that N = M.  

(b.3) Mt = XsU’L2 L”V,  Mq = Xs Sq–t U’L2 L”V,  L”V = Ys and  
L = L2 L”. Then, by the definitions, Mt+1 = Xs U’L2 YXL”V = Xs U’NV, and  
Mq = Xs Sq – t U’L2 YXL”V = Xs Sq – tU’MV. This implies that n = L2YXL” = M. 

(b.4) Mt = Xs Sr W1 LW2 Ti Ys  and  Mq = Xs Sq W1 LW2 TjYs. Then:  

Mt + 1 = Xs Sr W1 LW2 Ti YXYs = Xs Sr W1LW2 YXTiYs = Xs Sr W1NV1 and 

Mq + 1 = Xs Sq W1 LW2 Tj YXYs = Xs Sq W1LW2YXTj Ys = Xs Sq W1 MQ1 . 
This and the definitions imply that LW2YX = NR = MR’ for some R and 

R’.  Since |N| = |M|  it follows that N = M.  □  

It follows directly from Definition 5 that for any M ∈ D2,  M = f (N) for 
some N ∈ D1  and if  M = ULV  where  L ∈ Dn  then  L ∈ D1 ⊆ Dn. 

Proposition 8. For any 0 ≤ p,  q ≤ k, (1p×f ×1k ––  p)° f = (1q×f ×1k ––  q)° f. 
Proof. Let L∈D1 ,  and  f(L)=UNV∈D2,  for  U∈Dp,  N∈D1, V ∈ Dk ––  p. 

Then, (1p × f × 1k ––  p) ° f(L) = (1p × f × 1k ––  p)(UNV) = Uf(N)V. 
Let  
U = (ϕ ((0, x, t, r – p + 1)), ..., ϕ ((0, x, t, r))),  
N = (ϕ ((0, x, t, r + 1)), ..., ϕ ((0, x, t, r + n))),  
V = (ϕ ((0, x, t, r + n + 1)), ..., ϕ ((0, x, t, r – p + n + k))),  
f (N) = (ϕ ((0, x, t + 1, r + 1)), ..., ϕ ((0, x, t + 1, r + n + k))), 
U1 = (ϕ ((0, x, t + 1, r – p + 1)), ..., ϕ ((0, x, t + 1, r))), and 
V1 = (ϕ ((0, x, t + 1, r + n + k + 1)), ..., ϕ ((0, x, t + 1, r – p + n + 2k))). 

Then  U1  f(N)V1 = (ϕ ((0, x, t + 1, r – p + 1)), ..., ϕ ((0, x, t + 1, r – p + n + 2k))). 
Since r – p + n + k ≤ n + tk, it follows that r ≤ tk – k + p ≤ tk. This, and  

Proposition 7, imply that U = U1. 
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Since 0 ≤ r, it follows that n < r + n + 1. This, and Proposition 7, imply 
that V = V1. 

Hence, U f(N)V = U1  f (N)V1 and since U1  f (N)V1 does not depend on 
N it follows that (1p × f × 1k – p) ° f(L) = (1q × f × 1k – q) ° f(L)  for any L ∈ D1, 

i.e. that  (1
p × f × 1k ––  p) ° f = (1q × f × 1k ––  q) ° f.  □ 

Proposition 9. Let L = (ϕ ((0, x, t, i + 1)), ..., ϕ ((0, x, t, i + n))) and let  
f(L) = (ϕ ((0, x, t, i + 1)), ..., ϕ ((0, x, t, i + n + ))) = UNV = PMQ, 

where N, M ∈ Dn.  Then  Uf(N)V = Pf(M)Q. 
Proof. It follows from Proposition 8.  □ 

3. CONSTRUCTION 2 

Let C be a given nonempty set, C1⊆Cn and ρ :C1 → Cn + k  be such that: 
(1) If ρ(L) = UNV  and  |N| = n,  then  N ∈ C1;  
(2) If  ρ(L) = UNV = PWQ   and  |N| = |W| = n  then Uρ(N)V = Pρ(W)Q . 
This condition is equivalent to the following: for any  0 ≤ p, q ≤ k,   

(1p×ρ×1k ––  p) ° ρ = (1q×ρ×1k ––  q) ° ρ, where 1p × ρ × 1k ––  p : ρ(C1) → Cn ++  2k. 
For each x ∈ Cn\C1, let D(x), E(x), D1(x), ϕ and f be defined as in the 

CONSTRUCTION 1.  

Definition 6. Let H be the union of C and of all the D(x), x ∈ Cn\C1. 
Let H1⊆ Hn be the union of Cn and all the D1(x),  x∈Cn\C1, and let  h:H1→ Hn+k  

be defined by: 
If  x ∈ C1,  h(x) = ρ(x);  

If  x ∈ Cn\C1,  h(x) = f(x) = ((x, 1, 1), ..., (x, 1, n + k)); 

Proposition 10.  
(1) If h(L) = UNV and |N| = n, then N ∈ H1;  
 (2) If h(L) = UNV = PWQ and |N| = |W| = n, then Uh(N)V = Ph(W)Q .  
This condition is equivalent to the following: for any 0 ≤ p, q ≤ k,  

(1p×h×1k ––  p) ° h = (1q×h×1k ––  q) ° h,   where  1p×h×1k ––  p : h(H1) → Hn ++  2k. 
Proof. Follows from the Definition 6 and CONSTRUCTION 1. □ 
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4. CONSTRUCTION OF FREE (n, n + k)-SEMIGROUPS 

Let A be a nonempty set. Simply by replacing A with A×{0}, we as-
sume that all the new elements introduced in the construction are distinct, and 
are not elements of A. 

Step 0. Let A0 = A, B0 = ∅ ⊆ (A0)n, and f0 :B0 → (A0)n + k   be the empty 
map. Then the map f0 satisfies the conditions (1) and (2) from CONSTRUC-
TION 2. 

Step 1. We apply CONSTRUCTION 2 for C = A0, C1 = B0, and ρ = f0, 
to obtain, H, H1 and h. Define A1 = H, B1 = H1 and f1 = h :B1 → (A1)n + k. Then,  
f1 satisfies (1) and (2) from CONSTRUCTION 2, and moreover, A0 ⊆ A1,  
B0 ⊆ (A0)n ⊆ B1 ⊆ (A1)n and the restriction of f1 on B0 is equal to f0.  

Next, we continue by induction. Assume that we have reached  

Step m. With this step we have constructed the sets A0 ⊆ A1 ⊆ A2 ⊆ ... 
⊆ Am–1 ⊆ Am, and B0 ⊆ (A0)n ⊆ B1 ⊆ (A1)n ⊆...⊆ Bm–1 ⊆ (Am–1)n ⊆ Bm ⊆ (Am)n 
and the maps fj : Bj → (Aj)

n + k, for 0 ≤ j ≤ m such that the maps fj satisfy the 
conditions (1) and (2) from CONSTRUCTION 2, and the restriction of fj on Br 
is equal to fr for every 0 ≤ r < j ≤ m. 

Step m+1. We apply  CONSTRUCTION 2  for  C = Am, C1 = Bm, and 
ρ = fm, to obtain,  H, H1 and h. Define Am+1 = H, Bm+1 = H1 and  fm+1 = h. Then,  
fm+1 :Bm+1 → (Am+1)n+k, satisfies the conditions (1) and (2) from CON-
STRUCTION 2, and moreover, Am ⊆ Am+1,  Bm ⊆ (Am)n ⊆ Bm+1 ⊆ (Am+1)n and 
the restriction of  fm + 1  on  Bm  is equal to fm.  

With this procedure,  we have constructed sets  Aj,  Bj  and maps          
fj : Bj → (Aj)

n + k   for 0 ≤ j,  such that  Aj ⊆ Aj+1,  Bj ⊆ (Aj)
n ⊆ Bj+1, the restric-

tion of  fj+1 on  Bj  is equal to fj   and the maps fj satisfy the conditions (1) and 
(2) from CONSTRUCTION 2.  
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Definition 7. Let F(A) = j
j
A∪

≤0
 ,  B= j

j
B∪

≤0
 ,  O= kn

j
j

A +

≤

)(
0
∪  and let  

f   be  the union map of all the maps fj. 

Proposition 11. (a) B = (F(A))n;  

(b) O ⊆ (F(A))n+k;  and  
(c) (F(A), f) is a free (n, n + k)-semigroup with basis A. 

Proof. (a) Since for each 0 ≤ j,  Bj ⊆ (Aj)
n, it follows that B ⊆ F(A)n, 

and since for each 0 ≤ j,  Aj ⊆ Aj+1 and (Aj)
n ⊆ Bj+1, it follows that F(A)n ⊆ B. 

(b) Since for each 0 ≤ j, Aj ⊆ F(A) it follows that O ⊆ F(A)n+k.  
(c) From (a), (b), the definition of f and Proposition 10, it follows that 

(F(A), f) is an (n, n + k)-semigroup.  

Let (G, g) be an (n, n + k)-semigroup, and let gt:Gn→Gn+tk  be the maps 
as constructed in Propositions 1 and 2. Let η : A → G be a map. We will extend 
η  to an (n, n + k)-homomorphism ψ : F(A) → G in a unique way as follows: 

Step 0. Let ψ0 = η : A0 → G. 

Step 1. Let z ∈ A1 = H ≡ the union of A0 and all the D(x), x ∈ (A0)n\B0. 
If  z∈A0, we define ψ1(z) = ψ0(z). If  z∉A0, then z∈D(x)  for some x ∈ (A0)n\B0, 
i.e. z = (x, j, i), for some x∈(A0)n\B0,  1≤ j ≤ s, 1≤ i ≤ n+sk – jk. Since  x∈(A0)n, 
x = (x1, x2, ..., xn) where all the xt∈A0. Let y = (ψ0(x1), ψ0(x2), ..., ψ0(xn)) and 
let gj(y) = (w1,w2,...,wn+jk)∈Gn+jk. In this case we define  ψ1(z) = wjk–k +i. This, 
together with the definition of ϕ implies that for any t, ψ1(ϕ(0, x, j, t)) = wt. 

We claim that for any x = (x1, x2, ..., xn) ∈ B1,  
g((ψ1(x1), ψ1(x2), ..., ψ1(xn)) = (ψ1(a1), ψ1(a2), ..., ψ1(an + k)) 

where (a1, a2, ..., an + k) = f1(x). 

 Proof of the claim. If x = (x1, x2, ..., xn) ∈ (A0)n, then ψ1(xt) = ψ0(xt) 

and by definition ai = (x, 1, i), 1 ≤ i ≤ n + k, and ψ1(ai) = wi, where 

(w1, w2, ..., wn+k) = g1(y) = g((h0(x1), h0(x2), ..., h0(xn))). 
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If x ∉ (A0)n, then x ∈ D1(u) for some u = (u1, u2, ..., un) ∈ (A0)n\B0, i.e.  
x = (ϕ((0, u, j, i + 1)), ..., ϕ((0, u, j, i + n))) for some j ≥ 1, 0 ≤ i < tk – n. 

Then, (ψ1(x1),ψ1(x2),...,ψ1(xn)) = (wjk – k +i +1, wjk – k + i +2,..., wjk – k + n), where  

(w1, w2, ..., wn + jk) = gj((ψ0(u1), ψ0(u2), ..., ψ0(un)).  

So,  g((ψ1(x1),ψ1(x2),...,ψ1(xn)) = (vjk – k + i +1,vjk – k + i +2,..., vjk – k +n +k), where  

 (v1, v2, ..., vn + jk + k) = g j ++11  ((ψ0(u1), ψ0(u2), ..., ψ0(un)). 
Again by the definitions,  f1(x) = (ϕ((0, u, j + 1, i + 1)), ..., ϕ((0, u, j, i + n + k)))  

and  ψ1(ϕ(0, u, j + 1, t)) = vt = ψ1(at) for at = ϕ((0, u, j + 1, i + t)). Hence: 

g((ψ1(x1), ψ1(x2), ..., ψ1(xn)) = (ψ1(a1), ψ1(a2), ..., ψ1(an + k)) 

where (a1, a2, ..., an + k) = f1(x). 
 This implies the claim. 

Next we continue by induction. Assume that we have reached Step m. 

Step m. With this step we have defined a map ψm : Am → G, such that 
its restriction to any Aj is equal to ψj and  such that for any x = (x1, x2, ..., xn)∈Bm,  

g((ψm(x1), ψm(x2), ..., ψm(xn)) = (ψm(a1), ψm(a2), ..., ψm(an + k)) 

where (a1, a2, ..., an + k) = fm(x). 

Step m+1. Let  z∈Am+1 = H ≡ Am union all the D(x),  x∈(Am)n \ Bm. If  
z∈Am, we define ψm+1(z) = ψm(z). If z∉Am, then z∈D(x) for some x∈(Am)n\Bm, 
i.e. z = (x, j, i), for some x ∈ (Am)n \ Bm, 1 ≤ j ≤ s, 1 ≤ i ≤ n + sk – jk.  Since         
x∈(Am)n, x =(x1,x2,...,xn) where all the xt∈Am. Let y =(ψm(x1),ψm(x2),...,ψm(xn)) 
and  gj(y) = (w1, w2, ..., wn + jk) ∈ Gn + tk.  We define ψm+1(z) = wjk – k + i.  

By the definition, the restriction of  ψm+1  to  Am is equal to ψm. 

We claim that for any x = (x1, x2, ..., xn) ∈ Bm+1,  

g((ψm+1(x1), ψm+1(x2), ..., ψm+1(xn)) = (ψm+1(a1), ψm+1(a2), ..., ψm+1(an + k)) 

where (a1, a2, ..., an + k) = fm+1(x). 
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 Proof of the claim. If x = (x1, x2, ..., xn) ∈ Bm ⊆ (Am)n, then by induc-
tion and Step m: ψm+1(xt) = ψm(xt),  fm+1(x) = fm(x) = (a1, a2, ..., an + k), and  
g((ψm+1(x1), ψm+1(x2), ..., ψm+1(xn)) = g((ψm(x1), ψm(x2), ..., ψm(xn))  
= (ψm(a1), ψm(a2), ..., ψm(an + k)) = (ψm+1(a1), ψm+1(a2), ..., ψm+1(an + k)). 
All this implies the claim in this case.  

If x = (x1, x2, ..., xn) ∈ (Am)n\Bm, then ψm+1(xt) = ψm(xt) and by defini-
tion ai = (x, 1, i), 1 ≤ i ≤ n + k, and ψm+1(ai) = wi, where 

(w1, w2, ..., wn + k) = g1(y) = g ((ψm (x1), ψm (x2), ..., ψm (xn))).  
All this implies the claim in this case. 

If x ∉ (Am)n, then x∈D1(u) for some u = (u1, u2, ..., un) ∈ (Am)n\Bm, i.e.  
x = (ϕ((0, u, j, i + 1)), ..., ϕ((0, u, j, i + n))) for some j ≥ 1, 0 ≤ i < tk – n. Then,  
(ψm+1(x1), ψm+1(x2), ..., ψm+1(xn)) = (wjk – k + i + 1, wjk – k + i + 2, ..., wjk – k + n), 
where (w1, w2, ..., wn + jk) = gj((ψm(u1), ψm(u2), ..., ψm(un)).  So,  
g((ψm+1(x1), ψm+1(x2), ..., ψm+1(xn)) = (vjk – k + i +1, vjk – k + i +2,..., vjk – k + n + k), 

where  (v1, v2, ..., vn + jk + k) = g j ++  1((ψm(u1), ψm(u2), ..., ψm(un)). By the defi-
nitions, fm+1(x) = (ϕ((0, u, j + 1, i + 1)), ..., ϕ((0, u, j, i + n + k)))  and  
ψm+1(ϕ(0, u, j + 1, t)) = vt = ψm(at) for at = ϕ((0, u, j + 1, i + t)). Hence: 
g((ψm+1(x1), ψm+1(x2), ..., ψm+1(xn)) = (ψm+1(a1), ψm+1(a2), ..., ψm+1(an + k)) 
where (a1, a2, ..., an + k) = f1(x). 

This implies the claim. 
  This completes the induction. We define the map ψ to be the union of 
all the maps ψm. From its definition it follows that ψ is an (n, n+k)-homomor-
phism and it is unique with these properties.  

All this shows that (F(A), f) is a free (n, n+k)-semigroup with basis A. □ 

Example 4. Let n = 1, k = 2.Then s = 2, since  

(s – 2) k  = (2 – 2)2 < 1= n ≤ (2 – 1)2 = (s – 1) k < 1+2 = n + k ≤ 4 = sk. 

Let A = {a}. Then D = D(x) = {(a, 1, 1), (a, 1, 2), (a, 1, 3), (a, 2, 1)} 
and D1 = D = Dn. So F(A) = {a, b, c, d, e}, where b = (a, 1, 1), c = (a, 1, 2),       
d = (a, 1, 3), e = (a, 2, 1), and f : F(A) → (F(A)3 is defined by:  

f(a) = (b, c, d),   f(b) = (b, c, e),   f(c) = (c, e, c),   f(d) = (e, c, d),   f(e) = (e, c, e). 
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R e z i m e 
 

SLOBODNI (n, n + k)-POLUGRUPI 

Vo ovoj trud voveden e poimot za (n, n + k)-polugrupi, doka`ani se nekoi 
svojstva za niv i e daden algoritamski opis na slobodni (n, n + k)-polugrupi so 
dadena baza. 

Klu~ni zborovi: (n, n + k)-polugrupi; slobodni (n, n + k)-polugrupi  
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