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FOR DYNAMICAL SYSTEMS IN SYSTEMS BIOLOGY 
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A b s t r a c t: This paper proposes to use approximate instead of 
exact stochastic simulation algorithms for approximate Bayesian 
parameter inference of dynamical systems in systems biology. It 
first presents the mathematical framework for the description of 
systems biology models, especially from the aspect of a stochastic 
formulation as opposed to deterministic model formulations based 
on the law of mass action. In contrast to maximum likelihood 
methods for parameter inference, approximate inference method-
sare presented which are based on sampling parameters from a 
known prior probability distribution, which gradually evolves 
tward a posterior distribution, through the comparison of simu-
lated data from the model to a given data set of measurements. 
The paper then discusses the simulation process, where an over-
view is given of the different exact and approximate methods for 
stochastic simulation and their improvements that we propose. 
The exact and approximate simulators are implemented and used 
within approximate Bayesian parameter inference methods. Our 
evaluation of these methods on two tasks of parameter estimation 
in two different models shows that equally good results are 
obtained much faster when using approximate simulation as 
compared to using exact simulation. 
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1. INTRODUCTION 

Building mathematical models is needed for the analysis and better un-
derstanding of the behavior of dynamical systems. This includes observation 
and measurement of the behavior of the dynamical system under different con-
ditions, choosing a set of variables that describe the system, and creating a 
mathematical description of the model. After an adequate model has been cho-
sen for a certain dynamical system, an appropriate set of parameters has to be 
inferred. After a set of appropriate parameters has been chosen, a simulation of 
the proposed model is performed for comparison with existing experimental 
data and establishing the correctness of the model. 

In systems biology, a model is described as a complex network of 
chemical reactions driven by known kinetic laws. If the initial conditions of the 
system are known, a simulation can be made by evolving the system through 
time. 

The temporal evolution of the biological systems is traditionally con-
sidered as a deterministic process with known dynamical behavior described by 
the law of mass action, which can be described by a system of ordinary differ-
ential equations. The deterministic approach to modeling dynamical systems is 
inadequate for the description of cellular interactions [1] as it can be used only 
for systems with a large number of molecules, where the noise at the molecular 
level has no macroscopic effect. In the more general case, this approach does 
not allow for a complete and physically correct representation of the basic sto-
chastic processes that take place in a living cell. On the other hand, the discrete 
and stochastic evolution takes into account the discrete number of entities in the 
system and the random nature of the events taking place, drawing nearer to the 
theories of thermodynamics and stochastic processes [2]. 

In this paper we considerapproximate Bayesian methods for parameter 
inference in dynamical models from the area of systems biology. These meth-
ods, based on a sequential Monte Carlo technique, are being used for determin-
ing a posterior probability distribution over a space of parameter values. The 
approximate Bayesian approach can be used for a range of modeling methods 
without any significant modifications. Given a prior parameter distribution I 
can determine an appropriate posterior parameter distribution from incomplete 
or partially observable data. By using approximate methods, the determination 
of a likelihood function based on experimental data is replaced by a simulation 
based procedure. 
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The remainder of the paper is organized as follows. Section 2 presents 
the stochastic formulation of the problem of modeling reaction dynamics in the 
domain of systems biology. In Section 3, we give an overview of exact and 
approximate methods for stochastic simulation of reaction dynamics. We then 
discuss (in Section 4) the approximate Bayesian framework for parameter esti-
mation, which determines a proper/posterior probability distribution over the 
parameter value space, starting from a prior distribution and taking into account 
observed data. The approximate Bayesian framework based on a sequential 
Monte Carlo approach performs many stochastic simulations: We propose to 
use approximate stochastic simulation instead of exact simulation. Section 5 
compares the use of approximate and exact simulation in the context of parame-
ter estimation in two models of different dynamical systems. Section 6 con-
cludes and indicates a major direction for further work. 

2. MODELING REACTION DYNAMICS 

The deterministic approach to modeling reaction dynamics considers 
the temporal evolution as a continuous process with known behavior, described 
by a system of ordinary differential equations (one for each entity present in the 
system), called reaction rate equations. The deterministic approach presumes 
that, for a sufficiently large number of molecules the stoichiometric changes 
that take place in the system as a result of a single reaction are negligible and 
the change of the concentrations of the entities in the system is continuous. In 
this way, the small changes in the behavior of the system are approximated by 
the average behavior. Namely, the small changes in the molecular population 
are a result of an occasional firing of a certain reaction that introduces negligi-
ble changes in the macroscopic trend of the concentrations and the average be-
havior can be a good overall approximation of the evolution of the system [3]. 
In addition, the system is in a thermodynamic equilibrium and there are no 
changes in the temperature or the space in which reactions take place. 

In contrast to the deterministic mathematical formulation for which 
only one possible evolution through time exists the stochastic formulation in-
troduces uncertainty in the evolution. This uncertainty is described by a prob-
ability distribution. As a result, even if the initial conditions are known, some 
trajectories are more probable than other. By exploring a sufficiently large 
number of possible evolutions, given a set of final states, the system will reach 
some states more frequently than other. 
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In the stochastic formulation of modeling reaction dynamics, a system 
consists of a system of N molecular entities {S1, .., SN} that participate in M 
chemical reactions {R1, .., RM}. The entities are well stirred in a reaction space 
with volume V and are in a state of thermal, but not chemical, equilibrium. A 
large number of collisions that take place in this setting are elastic (nonreac-
tive). This behavior results in a uniform spatial distribution of the molecules in 
the reaction volume V and a distribution of the molecular speeds approximate 
to the Maxwell-Boltzmann distribution [4]. Given a described system, the non-
reactive collisions are ignored and only the events that result in change of the 
concentrations of the molecules are considered. 

The state of the system can be described as a vector of number of 
molecules Xi(t) for each entity at a given time t, X(t) ≡ (X1(t), …, XN(t)). The 
evolution trough time is a result of reactions fired. Every reaction is considered 
a separate, instantaneous, elementary and random physical event. Every reac-
tion Rj is characterized by a propensity function aj and a vector of state changes 
vj ≡ (v1j, …, vNj). Let X(t) = x. aj(x)dt then represents the probability that the 
reaction Rj will occur in the next differential time period [t, t + dt), and vij repre-
sent the change in the molecular population of Si as a result of the reaction Rj 
being fired. 

The probability of a reaction happening, for the purposes of the sto-
chastic formulation, must include a constant cj which depends on the physical 
characteristics of the molecules and the current temperature. Multiplying the 
probability cjdt with the total number of different combinations of reactants of 
reaction Rj in V at time t, gives the probability Pj(dt) of the reaction Rj happen-
ing in the interval [t, t + dt), if the system is in state X at time t. That is 

 (j j j jP dt a dt c h dt) = = . 

Gillespie [5] presents the physical principle of propensity in reactions. 
If Rj is an unimolecular reaction in the form 1 Products,jc

S ⎯→  there exists a con-
stant cj, so that cjdt is the probability that a molecule from S1 will participate in 
a reaction at the next differential time dt. The laws of probability state that if 
there currently are x1 molecules of the entity S1 present in the system, the prob-
ability that any one of them will participate in a reaction at the next dt is x1cjdt. 
The propensity then can be calculated as aj(x) = cjx1. If Rj is a bimolecular reac-
tion in the form 1 2 Products,jc

S S+ ⎯→  there exists a constant cj so that cjdt is the 
probability that a random pair of molecules from S1 and S2 respectively will 
participate in a reaction at the next differential time dt. The probability that any 
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of the x1x2 pairs of molecules will come into reaction Rj at the next differential 
time dt is x1x2cjdt. In this case, aj(x) = x1x2cjdt is the propensity function. If the 
bimolecular reaction is in the form, the number of different pairs is x1(x1 – 1)/2 
and the propensity is aj(x) = (x1(x1 – 1)/2)cjdt and so on. Given a termolecular 
reaction the propensity will depend on the number of triplets that can be 
formed. Termolecular reactions are very rare because of the low probability of 
simultaneous collision of three molecules, and are modeled as a sequence of 
bimolecular reactions. 

3. STOCHASTIC SIMULATION METHODS 

3.1. Exact methods 

Gillespie proposes a Monte Carlo technique, known as the stochastic 
simulation algorithm, for generating solutions for X(t) [6]. The numerical simu-
lation of the evolution through time is based on answering two crucial ques-
tions at every step: (1) When will the next reaction occur? (2) Which reaction 
will be executed? The algorithm proposed by Gillespie represents an algorithm 
for exact stochastic simulation of a system based on a probability density func-
tion of the reactions. 

One simulation for times t1 through tstop results in only one possible re-
alization. Several independent realizations are needed for a good estimate of the 
average concentrations of the entity Si at time t. 

Gillespie originally proposes two exact methods for stochastic simula-
tion. These arethe direct method and the first reaction method. Although these 
methods are most widely used, another frequently used method is the next reac-
tion method of Gibson and Bruck [7] for the simulation of models with many 
species and many channels. 

In the direct method, to generate a pair of a time and a reaction index, 
two independent random values r1 and r2 are sampled from theuniformly dis-
tributed interval U(0, 1). Using these random values the time is calculated as 

 
1

1 1ln ,
a r

τ ⎛ ⎞= ⎜ ⎟
⎝ ⎠
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and the index of the most probable reaction happening in the interval ( t ,τ+  
)t dτ τ+ +  is the smallest integer such that  
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For the first reaction method, tentative reaction times are generated for each 
reaction. The method then takes the smallest vτ . The index v for which vτ  is 
the smallest is taken as a parameter for execution of every simulation step. 

In theory the asymptotic complexity of both methods coincides. In 
practice the direct method performs better, this is due to the smaller number of 
random numbers being drawn in each step. 

The method of next reaction is an improvement of these methods and 
outperforms them when applied to systems with a large number of reactions. 
This method is a popular and efficient implementation of the method of first 
reaction. The method uses an indexed binary tree as a priority queue P to find 
the next reaction and the time of its occurrence. It also implements a directed 
graph G, calculating only propensities and reaction times that are being influ-
enced by the selected reaction. 

As opposed to the exact methods, the approximate stochastic simula-
tion methods trade a certain amount of precision to speed up the simulation 
process. The τ-leaping method and its improvements are the most widely used 
approximate methods. 

3.2. Approximate methods 

The first τ-leaping method was proposed by Gillespie et al. [8], where 
the authors consider a leaping condition in the propensity functions. If there 
exists a time period t in which the propensities aj are almost constant, then the 
number of occurrences of a reaction Rj in the time interval [ , )t t τ+  can be ap-
proximated with a Poisson random variable. Instead of calculating reaction 
times at every step, this method selects the largest time τ for which the leaping 
condition is being met and generates, for every reaction Rj, a random sample 
with Poisson distribution ( )j j jk a ,τ=  and updates the system according to 
the formula. 
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A problem with the τ-leaping method appears while generating a ran-
dom Poisson variable. The Poisson approximation of kј may result in firing re-
action Rj so many times that the number of molecules of a reactant becomesin-
sufficient and its population becomes negative. 

Tian et Burrage [9] and in another independent research Chatterjee et 
al. [10] propose a way of addressing the negative population problem by ap-
proximating kj with a binomial random variable and defining an upper bound of 
the distribution that will not allow the selection of large values for kj. 

Cao et al. [11] on the other hand, propose an approach that uses the 
original Poisson random variables and avoids the negative population problem. 
A negative population may appear only in cases where the number of molecules 
of a certain reactant is sufficiently small, so that the reactions are split in two 
groups: a group of critical reactions, which may result in negative populations, 
and a different group of noncritical reactions, with a smaller probability of 
negative populations appearing upon firing. This separation of the reactions in 
two groups allows for simulating the critical group with the standard exact 
methods and simulating the reactions in the noncritical group by τ-leaping. 

Taking into consideration a real system, the change of the number of 
molecules for each of the participants in the reaction can be quick at first, espe-
cially in systems with a small number of molecules, and then continue to evolve 
slowly. The original τ-leaping method will speed up the process of simulation 
for systems with a large number of molecules which reach a stable state very 
quickly, but reaching the same effect with the original methodon a more general 
chemical (biological) system is a matter of discussion. 

An implicit version of the τ-leaping method is proposed for the solution 
of stiff models [12]. The choice of explicit or implicit τ is being made based on 
previous knowledge of the behavior of the system. Having considered the origi-
nal explicit and the implicit version of τ-leaping, an adaptive method is pro-
posed for the simulation of general biochemical systems [13]. The adaptive 
method automatically chooses one of the two proposed methods depending on 
the stiffness of the system during simulation. 

In the trivial case where none of the propensity functions depend on the 
current state of the system, the leaping condition will be met for every τ. Every 
reaction introduces a small change in the number of molecules present in the 
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system, so in a system in which large numbers of molecules appear as reactants, 
large numbers of reactions need to be fired to the effect of the propensity func-
tions being significantly changed. So, for systems with a large number of par-
ticipating molecules, where the exact methods will be slower in their execution, 
it can be said that the leaping condition will be met for a time τ that will allow a 
large number of reactions to be fired in the interval [t, t + τ). If a relatively 
small value for τ  is selected (τ  = 1/а or smaller), the resulting time for the leap 
will match the time selected using exact methods, which in turn is an inefficient 
use of the τleaping method. On the other hand, selecting the largest possible 
value for the leap time speeds up the simulation process, so the largest τthat 
meets the leaping condition has to be selected in computationally efficient way. 
The formulas for τ-selection, both explicit and implicit, are given by the follow-
ing formulas 
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Here, Irs is the set of all reactions, the expected change of the propensi-
ties is bounded by ε (0 < ε < 1), and gi is given by a formula which guarantees 
that bounding the relative change of states is sufficient for bounding the relative 
change of propensity functions [13]. In both cases μi and σi are calculated using 
the following formulae: 

 ( ) ( )
necr

i ij i
j J

x v a x ,μ
∈
∑            rsi I∀ ∈ ,  

  [ ]2 2( ) ( )
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i ij i
j J
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Here, Jnecr is the subset of reactions that are neither critical nor in a partial 
equilibrium. The implicit τ(im) is chosen when its value is larger than Nstiff τ(ex) 
and the system is ruled to be stiff. The Nstiff parameter is usually chosen to be 
100. 
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4. APPROXIMATE BAYESIAN PARAMETER ESTIMATION 

The methods used for parameter inference on complex multidimen-
sional systems are based on a group of Monte Carlo algorithms based of the 
knowledge of a likelihood function P(D|θ). While the methods based on a 
maximum likelihood approach tend to infer the parameter vector by maximiz-
ing the likelihood function arg max ( )ˆ P D,

θ
θ θ= [14] [15], the Bayesian ap-

proachesgiven an prior distribution ( )π θ  give as a result a posterior distribu-
tion of the parameters ( )| Dπ θ  such that ( ) (D| ) ( )| D Pπ θ θ π θ=  [16], [17]. If 
the likelihood isn’t known, the use of these approaches is impossible and an 
alternative approach is needed for the process of parameter inference which 
isn’t based on the likelihood function. These methods are known as approxi-
mate Bayesian computational methods. These methods are being used more 
frequently in genetics [18], [19], epidemiology and ecology where they have 
proven to be useful [20]. One of the main advantages of these methods is the 
ability to be used with different kind of models, deterministic of stochastic. In 
this paper, an analysis of the application of these methods is made, using the 
exact and approximate stochastic simulation methods described. 

Let D be a set of discrete data, which is generated from a model M us-
ing a vector of parameters θ with a prior distribution π (θ). The posterior distri-
bution of the parameters after observing the given data D can be obtained by 
using the formula 

 ( ) ( )( )
( )

P D || D
P D

θ π θπ θ = ,  

in which ( ) ( ) ( )P D P D | dθ π θ θ= ∫  is evidence in favor of the model M or mar-

ginal likelihood. The analytical solution of ( )| Dπ θ  may not be given for most 
of the models if the marginal likelihood cannot be computed by integration. As 
an alternative, it is possible to apply a numerical solution to the problem using 
Monte Carlo techniques developed for this kind of problems. If we are unable 
to calculate the marginal likelihood, the likelihood term P(D | θ) cannot be cal-
culated either, but simulated data from the model can still be obtained. 

The basic approximate Bayesian algorithm for parameter inference is 
the algorithm proposed by Pritchard [18] which in turn is based on the rejection 
method. The rejection method is based on simulating data from a model and 
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does not depend on the likelihood function. Relaxing the condition in which 
simulated data D’ are accepted only when it is identical to the given set of real 
data D and by introducing a measure of closeness between the real and simu-
lated data (ε) we get the first approximate Bayesian method based on the rejec-
tion method for parameter estimation. The methodis executed by going through 
the following steps: 

1. Sample parameters θ from the given prior distributions ( )π ⋅ ; 

2. Simulate new data set D’ using the sampled parameters; 
3. Accept the parameters θ if d(D, D’) ≤ ∑,  

where the function d is a distance metric on the state space. 

This basic method has been extended in various ways. The Markov 
Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling a 
probability distribution by constructing a Markov Chain whose stable distribu-
tion conforms to the desired posterior distribution. The most widely known 
MCMC algorithms are the Metropolis-Hastings [21] [22] sampler and the 
Gibbs sample [23], the latter being a special case of the first one. 

The MCMC methods are not Bayesian in nature, but are frequently 
used in applications that use the Bayesian approach. These methods maximize 
the statistical efficiency of every the Monte Carlo estimation. Although the 
marginal likelihood does not have to be given when using these methods, the 
likelihood function is needed. 

As mentioned before, the likelihood functions of some models cannot 
be computed, so these algorithms are not a good solution for the problem. 
Marjoram et. al. [24] proposed an algorithm that can be a solution of this prob-
lem. The main difference between this and the previous approaches is the use 
of simulated data instead of calculation of the likelihood function. 

An approximate version of this algorithm uses a tolerance ε of the dis-
tance between the simulated data and the real data analogous to the basic 
method. The result of this algorithm is a Markov Chain, which contains the 
posterior distribution of the parameter space and will always converge towards 
a solution. The main disadvantage of this method is the relatively small accep-
tance rate which may result in long chains. Also, given the nature of the proc-
ess, the algorithm may get stuck in regions of low probability for a long time. 
Apartial solution of this problem is the use of sequential Monte Carlo methods 
that use the obtained approximated distributions as marginal probabilities of a 
larger family of distributions through which the sampler can easily traverse. 
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The sequential Monte Carlo simulation based method with partial re-
jection control can be used as an alternative solution [25]. A population of pa-
rameters θ(1)… θ(n) is propagated from an initially defined parameter distribu-
tion, through intermediate distributions until the population becomes a sample 
from the required posterior distribution. Because the approach includes a whole 
population of parameter distributions, this method allows analysis of systems 
with parameters that may have complex (multimodal) distributions. The distri-
butions in the population that does not correspond to the required posterior dis-
tribution are being easily rejected in contrast to the suitable ones by allocating 
importance weights. 

The rejection process can also be realized by introducing a gradient of 
tolerances for the populations. In every step, every particle foregoes a perturba-
tion by a Markov kernel with the goal of improving the particle dispersion. This 
kernel can be a standard Gaussian kernel or a Metropolis-Hastings acceptance 
step. The kernel is also used for calculating the importance weights. Because 
there is a possibility of degeneration of a certain population, a resampling step 
is introduced to remove from the population unwanted particles that have small 
importance weight and normalize others. 

While running the algorithm, there is a possibility of biased posterior 
samples being produced by approximating the weights with two unbiased 
Monte Carlo scores. The solution is implementing a backwards kernel for ob-
taining an unbiased posterior probability. This approach is being used in the 
Monte Carlo method [26] that implements a special case ofthe sequential im-
portance sampling algorithm by Del Moral [27]. 

The algorithm for the approximate Bayesian method, based on sequen-
tial Monte Carlo, proceeds as follows: 

1. Initialize ε 1, …, εT. Set the population indicator t = 0. 
2. Set the particle indicator i = 1. 
2.1. If t = 1independently sample the prior distribution x** ~ π(x).  

If t > 1 sample x* from the previous population {xt–1
(i)} with 

weights {wt–1
(i)} and pertur b the particle to obtain x** ~ Кt(x|x*), 

where Kt is a perturbation kernel. 
If π(x**) = 0 return to 2.1 
Simulate a candidate dataset D(b)(x**) ~ f(D|x**),  
Bt times (b = 1, ... , Bt) and calculate bt(x**). 
If bt(x**) = 0, return to 2.1 
IF d(D(b)(x**), D0) ≥ εt return to 2.1 
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2.2. Set xt
(i) = x** and calculate the weight for particle xt

(i) 
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If i < N, set i = i + 1, go to 2.1 

3. Normalize the weights. If t < T, set t = t + 1, go to 2. 

It is important to mention that this algorithm will follow the defined 
steps when estimating the parameters of a stochastic model. If the model is de-
terministic, we have Bt = 1 and the algorithm is much simpler. 

Within Step 2.1 of the algorithm, exact stochastic simulation is typi-
cally used. In this paper we propose the use of approximate stochastic simula-
tion. In the next section, we compare the two alternatives. 

5. EVALUATION 

The evaluation of the precision of the stochastic simulator can be made 
only probabilistically by simulating a model a large number of times and exam-
ining the distribution of the results of the simulation. A group of models from 
the discrete stochastic models test suite [28] are used for the evaluation. Every 
model used for testing contains a description in SBML [29] format, as well as 
the expected mean values and acceptable standard deviation of the obtained 
concentrations of the entities in the model (given a regular time frame). Our 
results on the models tested obtained by using an average values from 10000 
independent simulations for each test modelshow values within the acceptable 
intervals of deviation given by the authors. 

A modified version of the ABC-SysBio package is then used for ap-
proximate Bayesian parameter inference [30]. The exact and approximate sto-
chastic methods for simulation previously discussed namely the direct method 
and the adaptive explicit-implicit tau leaping method, are implemented and 
tightly integrated within the package for the purpose of evaluating the precision 
of the inferred posterior probabilities of the parameters. 

The approximate Bayesian framework based on the sequential Monte 
Carlo method is being used with the possibility of defining a number of simula-
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tions being made for each particle of the population. The role of the parameter 
Bt is investigated given the inferred posterior distributions of the parameters of 
the system. Another issue we consider is the influence of the number of sam-
pled particles within a population on the inference of a required posterior dis-
tribution. The results obtained using exact and approximate simulations are 
given in parallel for two models in each of the following subsections. 

5.1. Dimerization model 

Wilkinson’s dimerization model [31] is a basic model of a biochemical 
process having an important regulatory role in a large number of biological 
proceses. A description of the model in a discrete and stochastic formulation is 
made for compatibility with the simulators. The model consists of two species 
P and P2 which take part in two reactions. The first is a reaction of dimeriza-
tion 2P → P2, with a rate c1, in which two moleculs from the species P form a 
dimer P2. The second is a reaction of dissociation P2 → 2P, with a rate c2, in 
which a molecule from the dimer P2 is converted into two molecules of species 
P. From this model with parameters (c1, c2) = (0.00166, 0.2), a synthetic data-
set is generated. To each point of the dataset, Gaussian noise from the distribu-
tion N(0, (0.5)2) is added. The dataset, created under thegiven conditions repre-
sents a set of measurements from a process of dimerization. 

For the estimation of the parameters of the model of dimerization and 
the evaluation of the number of simulations of each particle in the population, 
the following prior distributions of the parameters are used π(c1) ~ U(0, 0.05),  
π(c2) ~ U(0, 0.5). The initial conditions are (P, P2) = (301, 0). The process of 
parameter inference goes through the following tolerance gradient ε = (80, 70, 
60, 50, 45). The distance metric, being used is the square root of the sum of 
squared distances. The Perturbation kernels are uniformly distributed according 
to Кt = σU(–1, 1), where σc1 = 0.002, σc2 = 0.2. For each population, 100 ac-
cepted particles are considered.. 

Figure 1 and 2 shows the results of performing only one simulation per 
particle using the exact and approximate simulations. 

The posterior distributions obtained by using the exact and the approxi-
mate simulation are similar. Considering the amplitudes of the posterior distri-
bution, we can conclude that a good approximation of the parameters is being 
made. 
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Fig. 1. The posterior distributions of the parameters of the dimerization model  
using exact simulation (Bt = 1) 

 

 
Fig. 2. The posterior distributions of the parameters of the dimerization model  

using approximate simulation (Bt = 1) 

In the next step, we increase the number of simulations per particle to 
Bt = 10. The posterior distributions of the parameters are shown in Figures 3 
and 4. 
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Fig. 3. The posterior distributions of the parameters of the dimerization model  

using exact simulation (Bt = 10) 
 

  
Fig. 4. The posterior distributions of the parameters of the dimerization model  

using approximate simulation (Bt = 10) 

Looking at the posterior distributions, clearly differentiated regions are 
noticeable where the exact required parameter values should lie. Same as be-
fore, the posterior distributions obtained using exact and approximate simula-
tion are similar and a good approximation of the parameters is being made. In 
addition we can conclude that the precision of the inference depends on the 
number of simulations per particle. This can also be seen in Figure 5 where the 
evolution of the concentrations of the species is shown with respect to the in-
ferred parameters. 
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Fig. 5. Evolution of the concentrations of the species with inferred parameters.  

(Bt = 1 (upper graph) and Bt = 10 (lower graph)). The dots represent the values from  
the synthetic dataset. In the region between the solid lines are the data generated  

by simulationsusing the inferred parameters 
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We next consider a larger number of accepted particles per population 
in the parameter inference process for the dimerization model. 

Parameter inference using Bt = 10 and P = 1000 is performed. The 
results can be seen in Figures 6 and 7. An improvement in the distribution of 
the parameter values can be seen and the distributions now resemble a Gaussian 
distribution with mean value close to the original parameters. 

  
Fig. 6. The posterior distributions of the parameters of the dimerization model  

using exact simulation (Bt = 10 and population size P = 1000) 

 

 
Fig. 7. The posterior distributions of the parameters of the dimerization model  

using approximate simulation (Bt = 10 and population size P = 1000) 
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5.2. Michaelis-Menten model 

The second model being considered in detail is the Michaelis-Menten 
model of a biomolecular reaction between an enzyme E, which reversibly reacts 
with a substrate S forming an enzyme substrate complex C, which (as a result of 
an unimolecular reaction) is converted to product P and enzyme E. The stochas-
tic model consists of three reactions: the reaction of forming an enzyme sub-
strate complex S + E → C (with rate c1), the reverse process of converting the 
enzyme substrate complex to a molecule of an enzyme and a molecule of a sub-
strate C → S + E (with rate c2) and a reaction of forming a product C → E + P 
with rate c3. This model is used in a various biochemical processes. As in the 
previous case a synthetic dataset is generated from the model with parameters 
(c1, c2, c3) = (0.00177, 0.0001, 0.1), to which a Gaussian noise from the distri-
bution N(0, (0.5)2) is added, resulting in dataset of measurements. 

Taking into account the influence of the number of simulations per par-
ticle on the precision of the approximation, we vary the number of accepted 
particlesper population for the parameter inference in the Michaelis-Menten 
model. The parameters that are being inferred have the following prior distribu-
tions π(c1) = π(c2) ~ U(0, 0.05), π(c3) ~ U(0, 0.5). The initial conditions for the 
species are as follows (E, S, C, P) = (301, 120, 0, 0). 

The process of parameter inference goes through the tolerance gradient 
ε = (90, 70, 50, 40, 35), the distance metric being the square root of the sum of 
squared distances. The perturbation kernels are uniformly distributed according 
to Кt = σU(–1, 1), where σc1 = 0.001, σc2 = 0.00001, σc3 = 0.01. 

The results from the parameter inference performing 10 simulations per 
particle on a population of 100 particles are given in Figures 8 and 9. Figure 8 
gives the results of using exact simulation, while Figure 9 gives the results of 
using approximate simulation. 

It can be noticed that, the posterior distributions obtained by using ap-
proximate simulation the mean value have a small difference as compared to 
the original parameter values. In both cases (exact and approximate simulation), 
the distributions of the parameter values have a large spread. This is the result 
of choosing a small number of accepted particles per population. Our next step 
was to increase the number of accepted particles per population. The results can 
be seen in Figures 10 and 11. 

Looking at the posterior distribution in the case of 1000 accepted parti-
cles per population, we can say that the parameters have good distributions that 
closely resemble a Gaussian distribution with a mean value close to the value of 
the original parameters. In Figure 12 the evolution of the concentrations thro-
ugh time using the inferred particle value distribution using exact and approxi-
mate simulation can be seen. 
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Fig. 8. The posterior distributions of the parameters of the Michaelis-Menten model 

estimated by using exact simulation (Bt = 10 and population size P = 100) 
 

  

 
Fig. 9. The posterior distributions of the parameters of the Michaelis-Menten model 

estimated by using approximate simulation (Bt = 10 and population size P = 100) 
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Fig. 10. The posterior distributions of the parameters of the Michaelis-Menten model 

estimated by using exact simulation (Bt = 10 and population size P = 1000) 
 

 

 
Fig. 11. The posterior distributions of the parameters of the Michaelis-Menten model 

estimated by using approximate simulation (Bt = 10 and population size P = 1000) 
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Fig. 12. Evolution of the concentrations of the species with inferred parameters.  
Bt = 10 and P = 1000 using exact (upper graph) and approximate (lower graph) 

simulation. Thedots represent the values from the synthetic dataset. In the region 
between the solid lines are the data generated by simulation using the inferred 

parameters 
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6. CONCLUSION 

In this paper, we present the stochastic view of reaction kineticsas used 
for modeling dynamical systems in systems biology. 

We consider the tasks of deductive and inductive inference with such 
stochastic models, i.e., simulation of and parameter inference in such models. 
We first give a review of exact and approximate simulation methods. We then 
discuss approximate Bayesian methods for parameter inference and the use of 
different simulation methods in this context. 

The widely used methods for parameter inference, based on the deter-
mination of a likelihood function (e.g., maximum-likelihood parameter estima-
tion), give point estimates of the parameter values in a dynamical system. 
Bayesian methods, on the other hand, infer a probability distribution of the val-
ues of the parameters in the system. Taking observed data into account, a prior 
distribution of the parameter values is evolved into a posterior distribution. 
Approximate Bayesian methods perform a large number of simulations of the 
model with parameter values sampled from the prior, comparing the simulation 
outcomes to the observed data. 

The main contribution of this paper is the proposal to use approxi-
matesimulation methods in the context of approximate Bayesian parameter 
inference, where many simulations are performed. Approximate simulation 
methods are much faster than exact methods: We expected this to result in 
much faster parameter estimation, hopefully without reducing the quality of the 
parameter estimates. 

We have implemented the approximate simulation methods in an ap-
proximate Bayesian framework based on the sequential Monte Carlo method. 
We have compared the results of parameter inference with approximate vs. ex-
act simulation on two parameter estimation tasks for two models of different 
dynamical systems. Parameter inference using approximate simulation methods 
gives satisfactory results, precise and very similar to the results obtained by 
using exact simulation. 

The number of simulations per particle was evaluated for its effect on 
the acceptance rate and the variance of the posterior distribution of the parame-
ter values. It was shown that the number of accepted particles per population 
has an effect on the variance of the posterior distribution. A larger number of 
accepted particles results in a smaller variance and more precise estimates of 
the parameter values. 
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Previous knowledge of the system is needed for adequate parameter es-
timation. The choice of the interval of the prior distribution has to be made ac-
cordingly. The increase of the interval results in a decrease of the acceptance 
rate, due to the random nature of the selection of the particles. 

The results of our research set the stage for using approximate Bayes-
ian parameter inference in the context of computational scientific discovery 
[32]. Methods for automated modeling of dynamic systems in systems biology 
[33] consider a large number of models structures, for which parameter infer-
ence needs to be performed. The efficiency and effectiveness of parameter in-
ference is critical issue in this context. 
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Р е з и м е 
 

АПРОКСИМАТИВНО БАЕСОВО ОДРЕДУВАЊЕ НА ПАРАМЕТРИ  
НА ДИНАМИЧКИ СИСТЕМИ ВО СИСТЕМСКАТА БИОЛОГИЈА 

Овој труд предлага употреба на апроксимативни наспроти егзактни алгоритми за 
стохастичка симулација за апроксимативно Баесово одредување на параметри на динамич-
ки системи во системската биологија. Прво ја претставува математичката рамка за опис на 
модели од системската биологија, особено од аспект на стохастичката формулација 
наспроти детерминистичката формулација на моделите која е базирана на законот за 
дејство на масата. Наспроти методите за одредување на параметри базирани на максимална 
веродостојност, претставени се апроксимативни методи кои прават избор на параметри од 
позната почетна веројатносна распределба, која постепено еволуира кон постериорна 
распределба, преку споредба на симулирани податоци добиени од моделот со познато 
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множество од мерења. Овој труд понатаму се осврнува на процесот на симулација и дава 
преглед на различните егзактни и апроксимативни методи на стохастичка симулација и 
нивните подобрувања кои ги предлагаме за употреба. Егзактните и апроксимативните 
симулатори се имплементирани и употребени во методите за апроксимативно Баесово 
одредување на параметри. Нашата евалуација на овие методи на две задачи за одредување 
на параметри на два различни модела покажува дека еднакво добри резултати се добиваат 
побрзо при употребата на апроксимативна симулација во споредба со користењето на 
егзактната симулација. 

Клучни зборови: системска биологија, кинетика на реакции, стохастички модели, егзактна 
стохастичка симулација, апроксимативна стохастичка симулација, апрок-
симативно одредување на параметри 
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