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TOPOLOGY INDEPENDENT SIRS PROCESS 

Igor Tomovski, Igor Trpevski, Ljupčo Kocarev 

A b s t r a c t: Following our recent work on the topology 
independent SIS spreading model [25, 26], in this article we ana-
lyze a SIRS type of a spreading processes, taking place on com-
plex networks characterized by a special form of contact dyna-
mics, for which we use the term "acquisition exclusivity". We 
show that, identically as for the SIS type process, for the studied 
set-up, in circumstances where statistical independence of joint 
events may be assumed, analytical solution for the probabilities 
that each node is in a certain status in stationary regime may be 
found. Furthermore, the obtained results indicate that the SIRS 
process, under the analyzed circumstances is topology indepen-
dent. 
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1. INTRODUCTION 

In the last decade, the theory of complex networks became one of the 
most exciting and fastest growing research areas in the modern science. This 
was primarily due to the rapid development of communication networks, espe-
cially the internet and the wireless communications. However, the serious 
growth of the transport, power distribution and other infrastructure networks, 
significantly contributed to this interest as well. A group of research problems 
most commonly studied on complex networks was the one related to network 
security, with the emphasis on stochastic spreading processes. Numerous stud-
ies treated different security problems, starting from processes of virus spread-
ing and virus spreading control [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15], cas-
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cading failures and blackouts [16, 17, 18, 19, 20, 21], attack vulnerabilities [22, 
23, 24] etc. 

When investigating the stochastic spreading processes on networks, 
most authors have addressed the issue from the aspect of their potential threat 
on the networks integrity and functionality. Lately, the social networks have 
invoked an interest in these processes from the aspect of their role in informa-
tion exchange and social interactions. In that context, in our recent work [25, 
26], we have studied their potential use for controlled spreading of content on 
technological networks. 

In [25, 26], we investigated a spreading process of SIS type taking 
place on networks, characterized by a special form of contact dynamics, for 
which the term "acquisition exclusivity" was used. As explained in these pa-
pers, we use the term "acquisition exclusivity" to denote a network contact be-
havior where at each instance every node in the network randomly contacts and 
acquires material from exactly one of its neighbors, with a certain probability. 
Spreading processes where similar types of "non-regular" contact/spreading 
behavior occurs, for various reasons, had also been analyzed in the literature, 
for example the contact process [27, 28], the Voter model [29] etc. Adopting 
the approach of Wang et al. [6] and Chakrabarti et al. [7], assuming that the 
hypothesis of statistical independence of joint events holds we showed that the 
SIS process under the studied circumstances is analytically solvable and topol-
ogy independent. Numerical investigations indicated that the validity of these 
results was dependent on the region where the process was analyzed, primarily 
due the validity of the hypothesis of statistical independence of joint events. 
The analysis showed that the obtained analytical results are valid for networks 
with large minimal node degree, for high β/δ ratios and in circumstances where 
β → 1. We argued that the importance of these results lays in their applicability 
for controlled spreading of useful content in technological networks. We sug-
gested that applications for controlled spreading of content may be developed. 
These applications should form virtual networks using the infrastructure of ex-
isting communication networks (lans, Internet etc). Useful content is shared 
through the virtual networks as a process of SIS type, where the number (statis-
tical expectation) of individuals (nodes) that posses the content at an instance in 
time is controlled by adequate combination of parameters β and δ. 

In this paper we extend these results to the spreading processes of SIRS 
type. Again in the analysis we adopt the approach of Wang et al. [6] and Chak-
rabarti et al. [7] and assume that the statistical independence of joint events 
holds. We show that, under the circumstances, an analytical solutions for the 
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probabilities that each node in the network is either susceptible, infected or re-
covered/removed, may be found. The analysis shows that, exactly as for the SIS 
process, the obtained results are topology independent. We analyze the validity 
of the obtained results by performing stochastic analyzes on synthetic (com-
puter generated) networks and derive conclusions in respect to the parametric 
and topological regions where the analytical results truly mimic the reality. 

2. DESCRIPTION OF THE ANALYZED PROCESS 

We observe a SIRS type of a spreading process occurring on network 
which is topologically represented by a graph that is strongly connected, un-
weighed and undirected. The network functions in acquisition exclusivity mode 
of contact dynamics. Let A = [aij] be the graphs '0' – '1' adjacency matrix; due to 
the prerequisites related to the characteristics of the graph A is symmetric and 
irreducible. With p(i ← j) we denote the contact probability, i.e. the probability 
that node i will contact node j at an instance of time and, possibly, acquire some 
form of spreading content. Due to acquisition exclusivity, ∑j = 1,N p(i ← j) = 1. 
Next, the contact probability p(i ← j) > 0 is strictly positive when aij = 1, and in 
general the contact probabilities p(i ← j) ≠ p(j ← i). Therefore, the matrix 
B = [bij], where bij = p(i ← j)aij is irreducible and asymmetric, satisfying 
∑j = 1,N bij = 1. It is assumed that no instantaneous reinfection may occur within 
one time step for both type of processes. 

In respect to the constrains given above, and using the approach of 
Wang et al. [6] and Chakrabarti et al. [7], the SIRS type process is described 
with the following set of probability equations: 

 ( ) ( ) ( ) ( )
1

1 1
N

S S I R
i i ij j i

j
p t p t b p t p tβ γ

=

⎛ ⎞
+ = − +⎜ ⎟
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∑ , 

 ( ) ( ) ( ) ( ) ( )
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δ γ
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+ = + −
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In (1), ( )S
ip t , ( )I

ip t ,  ( )R
ip t , , define the probabilities that the node i is in status 

susceptible, infected or removed, at time t, respectively. Parameter δ denotes 
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the probability that an infected node will recover and γ the probability that a 
removed node will become susceptible, both within one time step. 

The following solutions satisfy (1): 
• pI = 0N × 1, from which pR = 0N × 1 and pS

 = 1N × 1, with 0 and 1 being vec-
tors whose elements are all zeros and ones, respectively. 

• pS = [ S
ip ] such that S

ip δ
β

= , for 1i ,N= , yielding I I
ip⎡ ⎤= ⎣ ⎦p , where 

1

1

I
ip

δ
β
δ
γ

−
=

+
 and pR = [ R

ip ], such that
1

1

R
ip

δ
δ β

δγ
γ

−
=

+
 for all 1i ,N= . 

3. DYNAMICAL ANALYSIS OF THE STUDIED SET-UP 

In this section a dynamical analysis of the system (1) is presented. The 
aim of the analysis is to confirm the dynamical stability of the fixed points ob-
tained in the previous section. 

Theorem 1. For the system described with the set of equations (1) and 
,δ β>  the fixed point that corresponds to the state described with the vector 

[(pS)T (pI)T (pR)T]T = [(1)T (0)T (0)T]T is globally asymptotically stable. 

Proof. By rewriting the second equation of the system (1), in a vector 
form, one obtains: 

pI(t + 1) = ((1 – δ)I + βD(t)B) pI(t) = S(t)pI(t)  

              = S(t) S(t – 1)...S(0)pI(0) < St+1pI(0), 

where S(t) = (1 – δ)I + βD(t)B and S = (1 – δ)I + βB. Since λ1S =1 – δ + β < 1: 

 ( )lim 0t I

t→∞
=S p 0  (2) 

Note that, exists d > dia, such that for t > d product of matrices S(t) is a strictly 
positive matrix (has strictly positive components). From that, the relation (2) 
and since pI(0) ≥ 0, it may be concluded that for arbitrary pI(0): 
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 ( )lim 0I

t→∞
=p 0  

From the third equation of the system (1): 

 ( ) ( ) ( ) ( )( ) ( ) ( )lim 1 lim 1 1 limR I R R

t t t
t t t t ,δ γ γ

→∞ →∞ →∞
+ = + − = −p p p p  

it is obvious that: 

 ( )lim R

t
t

→∞
=p 0  

Finally, from the normalization condition, the fourth equation of the system (1), 
one obtains that: 
 ( )lim S

t
t .

→∞
=p 1  

The proof is completed.  □ 

Next, it will be shown that for β > δ, the fixed point S S
ip p ,δ

β
= =  

1

1

I I
ip p

δ
β
δ
γ

−
= =

+
 and 

1

1

R R
ip p

δ
δ β

δγ
γ

−
= =

+
 for all 1i ,N=  is valid solution for the 

system described with (1). In order to do so, it will be proven that the fixed 
point under observation is locally stable, while the other fixed point 

1S S
ip p ,= =  0I I

ip p= =  and 0R R
ip p ,= =  1i ,N=  is unstable. 

Theorem 2. For the SIRS type spreading process defined with a set of 

the status probability equations (1) and 1,δ
β

<  the fixed point 1S S
ip p ,= =  

0I I
ip p= =  and 0R R

ip p ,= =  1i ,N= , is locally unstable. 

Proof. First, the system (1) will be rewritten in the following form: 

 

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )
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i i i ij j i

i

R I R
i i i

p t p t p t

p t p t p t b p t p t

p t p t p t
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δ γ
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+ = − + − −

+ = − − + −

+ = + −

∑  (3) 
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By perturbing the second and the third equation of the system (3), at the ob-
served point, one obtains: 

 
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )
1

1 1

1 1

N
I I I
i i ij j

j

R I R
i i i

p t p t b p t

p t p t p t ,

δ δ δ β δ

δ δ δ γ δ
=

+ = − +

+ = + −

∑
 (4) 

or in matrix form: 

 
( )
( )

( )

( )
( )
( )

( )
( )

1 01
11

I I I

R R R

t t t
t t t

δ βδ δ δ
δ γδ δ δ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ++
= =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−+⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

I Bp p p
M

I Ip p p
 (5) 

In order to determine the local stability of the observed fixed point, analysis of 
the eigenvalues of the perturbation matrix M should be performed. As can be 
concluded from (5) the eigenvalues of M are ( ) ( )( )11 1MN N δ β

λ λ
− +

=
I Bπ π  and 

( )1 1 1
MN Nλ γ+ = − <π2 . Consequently, the largest eigenvalue of the perturbation 

matrix M equals the largest eigenvalue of the matrix (1 – δ)I + βB, i.e 
1 1 1

M
λ δ β= − + > . Therefore, the fixed point 1S S

ip p ,= =  0I I
ip p= =  and 

0R R
ip p= = , 1i ,N= , is locally unstable. 

Before we state the final theorem, we introduce the following: 

Assumption 1. Let β, δ, γ œ (0,1], with β ≥ δ, and let ρ be a complex 
number, satisfying 1ρ ≤ . Let: 

 

( ) ( )( )2

1 2

1
1 1 4

1

2,

c c

δ
βγ γ βδ δ
γ

λ

−
+ − ± − − −

+
=  

with 
1

1
1

c .

δ
ββ δ δρδ
γ

−
= − − +

+
 Then: 1 2 1, ,λ ≤  with equality holding only when 

β = δ and ρ = 1 + i0. 

Now, we will state the following theorem: 
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Theorem 3. For the SIRS type spreading process, defined with a set of 

the status probability equations (1), and for 1,δ
β

<  the point S S
ip p ,δ

β
= =  

1

1

I I
ip p ,

δ
β
δ
γ

−
= =

+
 and 

1

1

R R
ip p ,

δ
δ β

δγ
γ

−
= =

+
 is a locally stable fixed point. 

Proof. To prove the theorem, we are first going to introduce the follow-
ing transformation of variables: 

   ( ) ( )' S S
i ip t p t ,δ

β
= −    ( ) ( )

1

1

' I I
i ip t p t ,

δ
β
δ
γ

−
= −

+
   ( ) ( )

1

1

' R R
i ip t p t .

δ
δ β

δγ
γ

−
= −

+
 (6) 

By replacing the transformed variables, and by introducing the newly acquired 
constraint 0' S ' I ' R

i i ip p p+ + =  into the second and the third equation of the sys-
tem (1), one obtains: 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )
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⋅ −
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∑  (7) 

Next, to prove the local stability of the system (1) in the observed 
point, we will prove the local stability of the origin of the translated system (7). 
By perturbing the system (7) at the origin, one obtains: 

 
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

1
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1 1
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N
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j
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δβ βδ δ β δ β δ βδ δβ
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=
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+ = + −

∑
 

or in matrix form: 
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( )
( )

( )

( )
( )

( )
( )
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' I
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 (8) 

Let u(i) be the right eigenvector, associated to the i – th eigenvalue 
Si

λ  

of the matrix 
1

1
1

.

δ
βδ β δδ
γ

⎛ ⎞−⎜ ⎟
⎜ ⎟= − − +
⎜ ⎟+⎜ ⎟
⎝ ⎠

S I B  It is obvious that ( )iu  is eigenvector 

for the matrices 
1

,
1

δ
ββ δ
γ

−
−

+
I δI and (1 – γ)I, as well. Therefore, for the eigenvec-

tor w(j) corresponding to the to j – th eigenvalue of the matrix M, jλ
M

, one 

could consider the following form: ( ) ( ) ( )
1 2

i Tj ik k ,⎡ ⎤= ⎣ ⎦w u u with k1 k2 being con-
stants, that in general may be complex numbers. Then, from the eigenvalue eq-
uation ( ) ( )j j

jλ=
M

Mw w , and the equation (8), one obtains: 

 ( ) ( ) ( )
1 2 1

1

1

i i i
i jk k k

δ
βλ β λδ
γ

−
− =

+
S M
u u u  

 ( ) ( ) ( ) ( )
1 2 21i i i

jk k k ,δ γ λ+ − =
M

u u u  
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1 2 1

1

1

i
i j Nk k

δ
βλ λ β δ
γ
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⎛ ⎞−⎜ ⎟
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 ( )( ) ( )
1 2 11 i

j Nk k .δ γ λ ×+ − − =
M

u 0  (9) 

In order the system (9) has solution in respect to k1 and k2, confirming 
that the assumption about the form of the eigenvectors w(j) is valid, the follow-
ing relation should be satisfied: 

 

1

01

1

i j

j

,

δ
βλ λ β δ
γ

δ γ λ

−
− −

=+

− −

S M

M

 

from which one may find the values of jλ
M

's: 

 

( ) ( )( )2

1 2

1
1 1 4

1

2

i i

j , j

δ
βλ γ λ γ βδ δ
γ

λ

−
+ − ± − − −

+
=

S S

M
 

In the last equation 
1

1
1

i i

δ
βλ δ β δλδ
γ

−
= − − +

+
S B

. From the Perron-Frobe-

nius theorem, the largest eigenvalue of the matrix B, 1 1λ =
B

 is distinctive, with 

all other eigenvalues 1i .λ ≤
B

 If Assumption 1 holds, then 1 2 1j , j ,λ <
M

, for any 

( )0 1, , ,β δ γ ∈  satisfying the terms stated in the Theorem. The proof is com-
pleted.  □ 

Remark 1. The proof of the last theorem relies on the correctness of 
the Assumption 1. We have numerically investigated the claim, taking different 
values of β, δ, γ with step 0.01, considering that β > δ and ρ with step 0.01 for 
both the module and the argument. The numerics indicated that for all consid-
ered combinations (total of 5, 099, 490, 000), Assumption 1 holds. 
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Remark 2. The last two theorems confirm that the point S S
ip p ,δ

β
= =  

1

1

I I
ip p

δ
β
δ
γ

−
= =

+
 and 

1

1

R R
ip p

δ
δ β

δγ
γ

−
= =

+
 may be a valid solution of the system 

(1), for 1δ
β

< . However, since global asymptotic stability was not proven, this 

does not exclude the possibility that another solution in a form of a fixed point, 
periodic orbit, limit tori or chaotic attractor exists for the studied system. 

From the previous discussion, we may define the average number of 
susceptible nodes in the network, ( )

1

lim S
S it

i ,N

N p t ,
→∞

=

= ∑  the average number of 

infected nodes in the network, ( )
1

lim I
I it

i ,N

N p t
→∞

=

= ∑  and the average number of 

removed nodes in the network, ( )
1

lim R
R it

i ,N

N p t ,
→∞

=

= ∑  for different parametric 

regions: 

 

0 1 0 1
1

1 1
1 1 1

1 1

 S I R

, ,
N ,

N N N
N , N , N ,

δ δ
δ β β
β δ δ

δ δ δ δ δβ β
δ δβ β β γ β
γ γ

⎧ ⎧> >⎪ ⎪⎧ > ⎪ ⎪⎪⎪ ⎪ ⎪= = =− −⎨ ⎨ ⎨
⎪ ⎪ ⎪< < <
⎪ ⎪ ⎪⎩ + +⎪ ⎪

⎩ ⎩

 

As in [25, 26], the obtained results are topology independent. 

4. NUMERICAL RESULTS 

In order to check the validity of the results obtained in the previous sec-
tions, as well as to investigate the regions in which they adequately mimic the 
reality, in this section the results of stochastic simulations (the reality) are pre-
sented and compared with those analytically obtained. We use the same testing 
protocols as in [25, 26]. The simulations are performed on Barabási-Albert 
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graphs (in the following text we use the notation BA(m, m0, N)), where the 
minimal node degree is being altered by changing the parameter m. We focus 
on BA graphs, expecting that the statistical independence of joint events hy-
pothesis will be less valid on networks where the nodes with minimal node de-
gree are in large quantity. In that sense, BA graphs are the 'worst case scenario' 
for the tested process, when considering computer generated networks that 
mimic real world graphs. Identically as in [25, 26], the stochastic simulations 
are performed so that first the system network-infection, starting from arbitrary 
initial conditions, is iterated for 2000 time steps in order the system reaches the 
stationary regime. Then the system is further iterated for another 8000 time 
steps, after which the results are averaged. The analysis is repeated several 
times for different values of the parameters β, δ and γ. In the analysis, connec-
tion probabilities p(i ← j) have been chosen randomly for each existing link. 

The results of the analysis are presented in Figs. 1 and 2. 

Results from the numerical simulations suggest that similar conclusions 
as those obtained for the SIS spreading process in [25, 26], may be drawn for 
the SIRS process occurring under the circumstances studied in this paper, as 
well. As shown in Fig. 1 the validity of the analytical results increases for large 
β/δ ratios, and when larger values of β are considered. In addition, from the fig-
ure, one may conclude that parameter γ is positively correlated with the accu-
racy of the analytical results: as γ increases the analytical results better mimic 
the reality (results of the stochastic simulation). As presented in Fig. 2, by tak-
ing large values for both β and γ (β = γ = 1), a good match between the analyti-
cal results and the reality may be achieved for a wide range of values for the 
parameter δ. As Fig. 2 further indicates, the accuracy of the obtained results, 
identically as for the SIS type process [25, 26], increases with the increase of 
the minimal node degree in the network. 

The obtained results suggest that the SIRS type of spreading process, 
identically as described in [25, 26], under certain conditions, may be used as a 
basis for controlled spreading of useful content in technological networks. 
However, one must conclude that the SIS process, presented in our previous 
work is more suitable for this purpose. The reasons for that lays in the fact that 
the accuracy of the analytical results is more easily achieved for the SIS proc-
ess, in respect to the minimal node degree in the network. Next, the existence of 
an additional status ('removed') has an adverse affect on the validity of the hy-
pothesis of statistical independence of join events. 



18 I. Tomovski, I. Trpevski, Lj. Kocarev 

Contributions, Sec. Math. Tech. Sci., XXXIII, 1–2 (2012), pp. 7–22 

 

Figure 1. Analysis the SIRS type process occurring on the BA(7,8,1000) network  
as a function of β  for: a) δ = 0.2 and γ = 0.2; b) δ = 0.2 and γ = 0.8; c) δ = 0.4  

and γ = 0.2; d) δ = 0.4 and  γ = 0.8; e) δ = 0.6 and γ  = 0.2, f) δ = 0.6 and γ  = 0.8. The 
number of infected nodes obtained from the stochastic simulation (inf-sim), analytically 
obtained number of infected nodes (inf-ana), number of removed nodes obtained from 

the stochastic simulation (rem-sim) and analytically obtained number  
of removed nodes (rem-ana) are presented 
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Figure 2. Analysis the SIRS type process for different values of the parameter δ,  
when β = γ = 1, a) BA(4,5, 100), b) BA(7, 8,1000), c) BA(10,11,1000) network.  
The number of infected nodes obtained from the stochastic simulation (inf-sim), 

analytically obtained number of infected nodes (inf-ana), number of removed nodes 
obtained from the stochastic simulation (rem-sim) and analytically obtained number  

of removed nodes (rem-ana) are presented 

CONCLUSION 

We have shown that the SIRS type processes occurring on networks 
characterized by acquisition exclusivity and in circumstances where statistical 
independence of join events may be assumed is analytically solvable and the 
obtained results are independent of the network topology. This could be used as 
a basis for development of practical applications for controlled sharing of use-
ful content in technical networks. However, the results from the stochastic 
simulations suggest that the results previously obtained for the SIS process are 
more promising for this purpose. 
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Р е з и м е 
 

ТОПОЛОШКИ НЕЗАВИСЕН SIRS-ПРОЦЕС 

Следејќи го нашето претходно истражување за тополошки независниот SIS-модел 
на ширење [25, 26], во оваа статија анализираме SIRS-тип на процес кој се одвива на мрежи 
карактеризирани со посебен тип контактна динамика, за која го користиме терминот 
„аквизициска ексклузивност". Се покажува дека за разгледуваниот систем, идентично како 
и за процесот од SIS-тип, во услови кога може да се претпостави статистичка независност 
на здружените настани, може да се најде аналитичко решение за веројатностите секој од 
јазлите да се наоѓа во определен статус во стационарен режим. При тоа, аналитичките 
резултати укажуваат на тоа дека процесот од SIRS-тип, при околностите во кои се анализи-
ра е тополошки независен. 

Клучни зборови: комплексни мрежи; SIRS-процес; нелинеарни системи 
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