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NETWORKS 
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A b s t r a c t: In this article we propose a model for the spread of 
two types of information in networks. The model is a natural 
generalization of the epidemic susceptible-infective-susceptible 
(SIS) model. The two information types have different attractive-
ness, which affects the nodes' decision on which information type 
to adopt when both arrive at a node in the same time step. At 
difference with results from other authors, the model shows simul-
taneous existence of the two information types in the stable state. 
We give approximations for the average number of nodes infor-
med with each information type at the end of the spreading 
process when nodes have high degree. 
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INTRODUCTION 

The investigation of social spreading phenomena such as propagation 
of rumors, the diffusion of fads, the adoption of technological innovations and 
the success of consumer products mediated by word-of-mouth, has a long tradi-
tion in sociology and economics. It has been postulated [1, 2] that the network 
of contacts between individuals affects the spreading process, and recently, 
with the development of the theory of complex networks, these effects are 
gradually unravelled. Indeed, many spreading processes in general have been 
addressed with the advent of complex network theory, such as virus propaga-
tion in social and computer networks [3, 4, 5, 6, 7, 8], the diffusion of innova-
tions [9, 10], the occurence of information cascades in social and economic sys-
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tems [1, 12], disaster spreading in infrastructures [13], or information diffusion 
in a society through the word-of-mouth mechanism [14]. 

The most popular model for information or rumor spreading [15] points 
out the analogy between information spreading and epidemic spreading de-
scribed by the susceptible-infective-recovered (SIR) model. Agents in the in-
formation spreading model are divided in three classes: ignorants, spreaders 
and stiflers, which correspond to susceptible, infective and recovered individu-
als, respectively. Epidemiological models have been used to describe informa-
tion spreading ever since, a prominent example being modeling topic flow 
through blogspace using the SIR model [16], as well as describing word-of-
mouth in product marketing [14] with the SI model. We note that other widely 
used models for describing collective social behaviour are the threshold mod-
els, first proposed by Granovetter [17]. However, we do not treat threshold 
models in this work. The effects of network topology for threshold models have 
been analyzed elsewhere [11, 12]. 

All of the previously mentioned models treat the case where a single 
agent spreads in a network. In the context of complex network research, the 
spread of two types of information or epidemic contagions in a network has 
only recently been considered [18, 19, 20, 21, 22, 23, 24, 25]. The earliest study 
[18] treats two competing epidemics of the susceptible-infective-susceptible 
(SIS) type, one of which anihilates the other upon contact with certain probabil-
ity, i.e. acts as an immunizing agent, [19] treats positive and negative word-of-
mouth processes which are in essence two susceptible-infected (SI) processes, 
with the constraint that the negative word-of-mouth can spread only two hops 
away from its source. A generalization of the SIS model is proposed in [20] 
(and extended in [21]) where one disease has priority in the spreading process.  
B. Karrer and M. E. J. Newman [22], on the other hand, study two competing 
epidemics of SIR type by mapping the problem to a bond percolation. The 
model in our work is conceptually the same with that in [23], where two com-
peting epidemics of SIS type are investigated with a continuous-time dynamical 
model. Also, the probability that a node receives an information type from its 
neighbours is approximated using the Weierstrass product inequality. In such a 
setting the authors prove that only one of the epidemics will persist in a net-
work. They later generalize their model to allow coexistence of the two epidem-
ics [24]. 

The model we use is a natural extension of the susceptible-infective-
susceptible (SIS) epidemiological model, where a node in the network can be in 
one of two states: the susceptible (S) state, not having contracted the disease, or 
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in the infective (I) state, able to spread the disease to each of its neighbours. 
The infective nodes recover, becoming susceptible to the disease again. In this 
model each node can be in one of three states: susceptible (S) to an information 
type, and "infective'' with two different types of information. Nodes that have 
adopted information type 1 are said to be in state I1 and nodes that have adopted 
information type 2 are said to be in state I2. The infective nodes can spread the 
information they are infected with to their neighbours and can lose interest in 
their adopted information type, reverting back to the susceptible state. The two 
information types compete for the nodes, meaning that a node can adopt only 
one information type at a specific time. The main difference in our model from 
the one in [23] is that we propose a discrete-time version, and do not use an 
approximation for the probability of receiving the information types. We obtain 
that both information types can persist in the network. 

The questions of interest for this information spreading model are simi-
lar to those in epidemic spreading. In this paper we address two specific ques-
tions:  

• how many nodes will eventually be reached by each information type, 
and, 

• is there an ``epidemic threshold'' for the rate of spreading, separating a 
regime in which the information types remain confined to a small num-
ber of nodes from one where they affect a finite fraction of nodes in the 
network. 

A large amount of studies has addressed these same questions for epi-
demic spreading from a complex network perspective. Using percolation theory 
ideas and generating function methods, [3] give exact analytical results for the 
epidemic threshold, outbreak size, and other relevant quantities for the SIR 
model. The results represent average values over an ensemble of random graphs 
with an arbitrary degree distribution. In [26, 27], contrary to previous findings 
[4, 5], the presence of an epidemic threshold has been established for the SIS 
model and infinitely large networks with a power-law degree distribution. 
Rather than determining the epidemic threshold for a whole class of networks 
with a given degree distribution, [7] and [8] propose its calculation for a spe-
cific network given with an adjacency matrix, for a SIS and SIR model, respec-
tively. We follow this idea to determine the information spreading threshold in 
our model. 

The paper proceeds as follows. Section 2 gives the model definition 
and stability analysis by means of which the "epidemic threshold'' is deter-
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mined. In section 3 we describe the behaviour of the model on regular network 
topologies. Results on the number of infective nodes from this section are used 
as approximations for the number of infective nodes in complex network to-
pologies in section 4. The last section concludes the paper and points out poten-
tial research directions. 

2. INFORMATION SPREADING MODEL 

2.1. Definition of the model 

Consider a closed population of N individuals, whose network of con-
tacts is represented by an undirected unweighted graph G = (V, E), with node 
set V and link set E. Let A denote the adjacency matrix of the graph G, where 
aij = 1 if (i,j) œ E, i.e. individuals (nodes) i and j are in contact with each other, 
and aij = 0 otherwise. We propose a discrete stochastic model for information 
spreading among the nodes in such a network. 

At time t each node i can be in one of three possible states: I1, I2 and S. 
States I1 and I2 signify that the node is a supporter of information type 1 or 2, 
respectively, and can spread the information to its neighbours, and S is an un-
decided or neutral state of the node in relation to the information types circulat-
ing in the network. States I1 and I2 are analogous to the infective state I in the 
SIS model, and state S is the counterpart of the susceptible state. The state of 
the node is represented by a state vector containing a single 1 in the component 
representing the present state and 0 everywhere else,  

 ( ) ( ) ( ) ( )1 2
TI I S

i i i it s t s t s t ,⎡ ⎤= ⎣ ⎦s  

for all i œ 1,…, N. The vector  

 ( ) ( ) ( ) ( )1 2
TI I S

i i i it p t p t p t⎡ ⎤= ⎣ ⎦p  

is the probability mass function of node i at time t, and it states the probability 
for node i to be in each of the possible states at time t.  

The model is constructed as follows. First, we delineate all the disjunct 
events that can occur to node i in a single time unit when it interacts with its 
neighbours in Table 1. The events exhaust the space of all possible events of 
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receiving information from neighbouring nodes, meaning that they have proba-
bilities that sum to 1. In Table 1 ( ) 1I

if t  and ( ) 2I
if t  are given with 

 ( ) ( )1 1
1

1

1 1
N

I I
i ij j

j

f t a s tβ
=

⎡ ⎤= − −⎣ ⎦∏  

 ( ) ( )2 2
2

1

1 1
N

I I
i ij j

j

f t a s tβ
=

⎡ ⎤= − −⎣ ⎦∏  

and represent the probabilitiy that node i receives information type 1 or infor-
mation type 2, respectively, from any combination of its infective neighbours at 
time unit t. β1, β2 œ [0,1] are parameters which give the probability that an in-
fective node transmits the information upon contact with a neighbour. The as-
sumption that all transmissions of information among nodes are independent is 
used in the formulation of ( )1I

if t  and ( )2I
if t . 

T a b l e  1 
Events that can occur to node i in a single time unit  

when interacting with neighbours 

Event Probability of event 

1. Node i does not receive any information type 
from neighbours. ( )( ) ( )( )1 21 1I I

i if t f t− −  

2. Node i receives information type 1 from 
neighbours, but not information type 2. ( ) ( )( )1 21I I

i if t f t−  

3. Node i receives information type 2 from 
neighbours, but not information type 1. ( ) ( )( )2 11I I

i if t f t−  

4. Node i receives both information type 1 and type 
2 from neighbours. ( ) ( )1 2I I

i if t f t  

 

Next, we assume that receiving information from neighbours is only ef-
fective when a node is still in the susceptible state, i.e. it has not adopted any 
information type. The probability of receiving a single information type is 
given by events 2 and 3 in Table 1. When a node receives both information 



28  D. Trpevski, K. Stamenov, Lj. Kocarev 

Contributions, Sec. Math. Tech. Sci., XXXIII, 1–2 (2012), pp. 23–45 

types simultaneously, with probability given by event 4, it will adopt them ac-
cording to their attractiveness. The attractiveness of the information types is 
given with the parameters [ ]1 2 0 1a ,a ,∈ . If a susceptible node does not receive 
information from any neighbour, it stays susceptible. This is given with event 1 
in Table 1. 

Lastly, a node forgets information type 1 or 2 with probability 1δ  or 

2δ , respectively. We assume that the parameters are the same for all nodes, a 
situation which is not true in reality. 

Having described that, the equations describing the dynamics of each 
node, i.e., the evolution of the model, are  

      

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( ) ( )

( ) ( )

1 1 2 1 2 1

2 2 1 1 2 2

1 2 1 2

1 1

2 2

1 2

1 1 1

1 1 1

1 1 1

1  1

I I I I I IS
i i i i i i i

I I I I I IS
i i i i i i i

I I I IS S
i i i i i

i i

p t f t f t a f t f t s t s t

p t f t f t a f t f t s t s t

p t f t f t s t s t s t

t Realize t

δ

δ

δ δ

⎡ ⎤+ = − + + −⎣ ⎦
⎡ ⎤+ = − + + −⎣ ⎦

+ = − − + +

⎡ ⎤+ = +⎣ ⎦s p

 (2) 

where Realize[·] performs a random realization from the probability distribu-
tion given with ( )1T

i k +p . The parameters 1a  and 2a  which describe the attrac-
tiveness of each information type satisfy the constraint 

 1 2 1a a ,+ =  

which means that a node divides its opinion among a pool of information types. 
For a single node, the model equations constitute an inhomogeneous Markov 
chain, given on Fig. 1. 

Let  

 ( ) ( ) ( ) ( ) ( ) ( )1 2

1 1 1

N N N
I I S
i i i

i i i
X t s t ,Y t s t ,Z t s t

= = =

= = =∑ ∑ ∑  (3)  

be the total number of nodes in states 1I , 2I  and S at time t, respectively. Fur-

ther, let ( ) ( )[ ]
1

 IN t X t= E , ( ) ( )[ ]
2

  IN t Y t= E  and ( ) ( )[ ]  SN t Z t= E . We are 
interested in the average number of nodes that eventually (when t →∞ ) adopt 
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information types 1I  and 2I , ( )
1 1I IN N= ∞ and ( )

2 2I IN N= ∞ , compared to the 
total number of nodes N in the network. 

 
Figure 1. Diagram of the Markov chain which describes the dynamics  

of a single node i in the information spreading model 

The components of the state vector ( )
i ts  which appear in Eq. (2) are 

random variables. In order to facilitate the mathematical analysis we shall ana-
lyze the evolution of the expected values of these quantities in the remainder of 
the paper. The random variables ( )1I

is t ,  ( )2I
is t  and ( )S

is t  can be regarded as 
Bernoulli random variables, and hence their expected values are 

( ) ( )1 1I I
i is t p t⎡ ⎤ =⎣ ⎦E , ( ) ( )2 2I I

i is t p t⎡ ⎤ =⎣ ⎦E  and ( ) ( )S S
i is t p t⎡ ⎤ =⎣ ⎦E . This allows us to 

rewrite the model given with Eqs. (2) and (1) as  

     

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( ) ( )

1 1 2 1 2 1

2 2 1 1 2 2

1 2 1 2

1 1

2 2

1 2

1 1 1

1 1 1

1 1 1

I I I I I IS
i i i i i i i

I I I I I IS
i i i i i i i

I I I IS S
i i i i i

p t f t f t a f t f t p t p t

p t f t f t a f t f t p t p t

p t f t f t p t p t p t

δ

δ

δ δ

⎡ ⎤+ = − + + −⎣ ⎦
⎡ ⎤+ = − + + −⎣ ⎦

+ = − − + +

 (4) 

and 1I
if  and 2I

if  as 
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( ) ( )

( ) ( )

1 1

2 2

1
1

2
1

1 1

1 1

N
I I

i ij j
j

N
I I

i ij j
j

f t a p t

f t a p t

β

β

=

=

⎡ ⎤= − −⎣ ⎦

⎡ ⎤= − −⎣ ⎦

∏

∏
 (5) 

Equivalenly, ( )
1I

N t , ( )
2IN t , ( )

SN t  can be found using Eq. (4) as  

 ( ) ( ) ( ) ( ) ( ) ( )1 2

1 2
1 1 1

N N N
I I S

I i I i S i
i i i

N t p t , N t p t , N t p t
= = =

= = =∑ ∑ ∑  (6) 

As a further illustration that the system given with Eqs. (4) and (5) 
represents the dynamics of the expected-value quantities of the model in Eqs. 
(2) and (1) consider Fig. 2. As can be seen, the evolution of the summated 
probability vector according to Eq. (4) corresponds to the evolution of the 
number of nodes in each state as predicted by Eq. (2). Thus, system (4), at least 
in the stationary state, describes the probability vectors from which random 
realizations are made in Eq. (2). 

 
Figure 2. Evolution of Eqs. (2) and (4) on a 100-node Barabási-Albert network (see section 4) 
generated from a fully connected seed with 5 nodes and m = 2. Initially, node 84 is a supporter  
of information type 1, and node 415 is a supporter of information type 2. The solid lines show  
the number of nodes in each state as time progresses, as given by Eq. (3), and the dashed lines 

show the evolution of the average number of nodes in each state, as given by Eq. (6) 
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2.2. Dynamical systems approach 

In this part we apply a dynamical systems approach for the stability 
analysis of our model. Let us in Eq. (4) replace the probabilities for node i to be 
in states 1I  and 2I  with ( ) ( )1I

i ix t p t=  and ( ) ( )2I
i iy t p t= , respectively. In 

these terms, the evolution of the model can be written as 

 
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

1 2 1 2

2 1 1 2

1 1

2 2

1 1 1 1

1 1 1 1

I I I I
i i i i i i i i

I I I I
i i i i i i i i

x t x t y t f t f t a f t f t x t

y t x t y t f t f t a f t f t y t

δ

δ

⎡ ⎤⎡ ⎤+ = − − − + + −⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤+ = − − − + + −⎣ ⎦ ⎣ ⎦

 

  (7) 

where 

 
( ) ( )

( ) ( )

1

2

1
1

2
1

1 1

1 1

N
I

i ij j
j
N

I
i ij j

j

f t a x t

f t a y t .

β

β
=

=

⎡ ⎤= − −⎣ ⎦

⎡ ⎤= − −⎣ ⎦

∏

∏
 (8) 

One needs to rewrite the model in (4) and (5) in such a way since one of the 
probability equations is dependent on the other two, and would give linearly 
dependent rows in the Jacobian matrix. 

Equation (7) represents a dynamical system [ ] [ ]2 20 1 0 1N NF : , ,→ . To 
deduce that this dynamical system has only one globally stable fixed point, we 
use the description of the nodes' dynamics as time-inhomogeneous Markov 
chains. Indeed, when a node's chain is weakly ergodic, the node will have a sta-
tionary distribution of the probabilities ( ) ( )1 2I I

i ip t , p t  and ( )S
ip t  to a unique 

globally stable fixed point for each node in the dynamical system (4), or 
equivalently (7). We use the conditions for weak ergodicity of time-
inhomogeneous Markov chains given by Wolfowitz [28], which in this case 
basically mean that the graph of the Markov chain describing a node's dynamics 
is ergodic for all time (Fig. 1), and this translates to either 

 1 2 1 2 1 20 0 0 0 1 1, , , , ,β β δ δ β β≠ ≠ ≠ ≠ ≠ ≠  (9) 

or 
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 1 2 1 2 1 20 0 0 0 1 1, , , , , .β β δ δ δ δ≠ ≠ ≠ ≠ ≠ ≠  (10) 

The dynamical system (7) has a fixed point at ( ) ( )0 0i ix , y ,=  for all i. 
The local stability of this fixed point can be analyzed using the Jacobian matrix 
of the system (7) evaluated at the fixed point 

 1

2

0 0

0

0
N

( , )
N

A
DF | ,

A
β

β

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

where ( )
1 1 11A A I ,β β δ= + −  ( )

2 2 21A A Iβ β δ= + −  and 0N  (the matrix of all 0 

elements) are N N×  matrices. Hence the fixed point ( ) ( )0 0i ix , y ,=  is stable 
when 

 { }1 1 2 2max 11 1 ,,β λ δ β λ δ <+ − + −  (11) 

where λ  is the largest eigenvalue of the adjacency matrix. Whenever this con-
dition is fulfilled, no information type will eventually persist in the network, 
since the system will stabilize to a state where all nodes have probability 1 to be 
in the susceptible state, and from the aforementioned, this state is the only 
globally stable state. 

Restating condition (11) as 

 1 2

1 2

1 1, ,β β
δ λ δ λ

< <  (12) 

one can see that the value of  

 1τ
λ

=  

appears as a threshold value for the ratios of information transmission to forget-
ting 1 1/β δ  and 2 2/β δ . When these ratios are smaller than the network de-
pendent threshold, no information spread will occur in the network. Converse-
ly, when any of them surpasses the threshold, the fixed point ( ) ( )0 0i ix , y ,=  is 
unstable, and there will be information spreading in the network. For both of 
the information types to be able to spread in the network, both transmission to 
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forgetting ratios need to be larger than the network threshold. Thus, we recover 
the classical result of the existence of a network specific threshold for the 
spreading process. It acts as a critical point of the system dynamics, separating 
the regime where there is no information of any type present in the network 
from the one where a finite fraction of nodes have adopted an information type. 

Lastly, for the cases when (12) is not fulfilled, i.e. when there is infor-
mation spreading in the network, the average number of nodes reached by each 
information type (6) can be found by determining the unique globally stable 
fixed point. This is precisely what we attempt to do in the following sections. 
Because of the nonlinearities in the dynamical system, we give an approxima-
tion to the value of the fixed point when a node's degree is very large. Further-
more, we consider only the case when  

 1 2

1 2

1 1, ,β β
δ λ δ λ

> >  

since this is the case when both information types are able to spread in the net-
work. The cases when only one information type has transmission to forgetting 
ratio above the threshold reduce to a SIS epidemic model, and for this model 
the question of determining bounds on the fixed point has been solved [29]. 

3. BEHAVIOR OF THE MODEL  
ON REGULAR NETWORK TOPOLOGIES 

In this section we present results for the model behaviour on regular 
networks. The topologies considered are the star and fully connected network. 
In all numerical simulations there is one node in state 1I  and one node in state 

2I  initially. These act as sources for both information types, but can change 
their state as time progresses. The condition (9) or (10) for the convergence of 
the model to a unique fixed point will hold for all simulations. In all cases we 
denote the fixed point with ix  and iy  for all 1i , ,N= … . 

3.1. Star network 

In this section results on the star topology are presented. Assume that 
node 1 is the hub of the star, and nodes 2i , ,N= …  are the leaves. Eq. (8) for 
the star becomes 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

2

1

2

1 1
2

1 2
2

1 1

2 1

1 1

1 1

N
I

j
j

N
I

j
j

I
i

I
i

f t x t

f t y t

f t x t

f t y t

β

β

β

β

=

=

⎡ ⎤= − −⎣ ⎦

⎡ ⎤= − −⎣ ⎦

=

=

∏

∏  

For 2i , ,N= … . In the limiting case when N is large, i.e. when the hub has a 
large degree, ( )1

1
If t  and 2

1 ( )If t  tend to 1, after some time 0t t>  when the in-
formation types will have spread in the network. The fixed point in this case for 
the hub of the star is 

 

2 1
1

2 1 1 2 1 2

1 2
1

2 1 1 2 1 2

ax
a a

ay
a a

δ
δ δ δ δ

δ
δ δ δ δ

=
+ +

=
+ +

 (14) 

while for the leaves is 

 

2 1

2 1 1 2 1 2

1 2

2 1 1 2 1 2

i

i

zx
z z

zy
z z

δ
δ δ δ δ

δ
δ δ δ δ

=
+ +

=
+ +

 

where 

 
( )1 1 1 2 1 1 1 2 1 1

2 2 1 1 1 2 1 2 1 1

1
1

z x y a x y
z y ( x ) a x y

β β β β
β β β β

= − +

= − +
 

Figure 3 shows the results from the model evolution on a star with 1000 
nodes. One can see that the approximations for the probabilities of infection 
with information types 1 and 2 for the star and leaves given with (14) and (15) 
predict the simulation values well when the hub has a large degree. 
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Figure 3. The evolution of (4) for a 1000-node star. Initially, one leaf is in state I1  
and one leaf is in state I2. Lines with triangles show the values for x1(t) and y1(t).  

Dashed lines are the approximations (14) for the hub and dotted lines  
are the approximations (15) for the leaves 

The behaviour of the hub of a star with N + 1 nodes can serve as a sim-
ple model for what happens to an arbitrary node with degree N in an arbitrary 
network. 

3.2. Fully connected network 

Here we examine the behaviour of the model on fully connected net-
works. Equation (8) in this case becomes: 

 

( ) ( )

( ) ( )

1

2

1
1

2
1

1 1

1 1

N
I

i j
j , j i

N
I

i j
j , j i

f t x t

f t y t

β

β

= ≠

= ≠

⎡ ⎤= − −⎣ ⎦

⎡ ⎤= − −⎣ ⎦

∏

∏
 (16) 
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for all i. When N is large, each node will have many neighbours, and the prod-
uct in Eq. (16) will tend to 0, i.e.  

 ( )1 1I
if t →      and     ( )2 1I

if t →   

after some time 0t t>  when the information types will have spread in the 
network. This makes the fixed point for the fully connected graph 

 

2 1

2 1 1 2 1 2

1 2

2 1 1 2 1 2

i

i

ax
a a

ay
a a

δ
δ δ δ δ

δ
δ δ δ δ

=
+ +

=
+ +

. (17) 

for 1i , ,N= … . Figure 4 shows that (17) approximates the stable values for 
( )

ix t  and ( )
iy t  well when the degree of each node is high enough. Also, note 

that because of the dense topology, the degree of the nodes does not have to be 
as high as in the hub of the star for the approximation to hold. 

 
Figure 4. The evolution of (7) for a fully connected graph of 100 nodes. Initially,  

one node is in state I1 and one node is in state I2. Dashed lines represent  
the aproximations xi and yi given with (17) 
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Furthermore, the average number of nodes reached by information 
types I1 and I2 in this case after the system stabilizes can be calculated as 

1I iN Nx=  and 
2I iN Ny= . Naturally, this is also a good approximation to the 

average number of nodes in the network as calculated by (6) (see Fig. 5). 

 

Figure 5. The average number of nodes in each state NI1(t), NI2(t), NS(t) compared to the total 
number of nodes in the network N for the same fully connected graph of 100 nodes as in Fig. 4. 
Initially, one node is in state I1 and one node is in state I2. Dashed lines are the approximations  

for the fractions NI1/N and NI2/N as given by (17) 

4. BEHAVIOR OF THE MODEL ON COMPLEX NETWORK TOPOLOGIES 

In this section we present results for the model behaviour on complex 
network topologies. All experiments start with one node in state I1 and one 
node in state I2, which can change their state as time progresses. In particular, 
we shall see that the results on the regular network topologies can be related to 
the ones on complex network topologies when the nodes in the networks have 
high degree. 
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4.1. Erdõs-Rènyi random networks 

The model proposed by Erdõs and Rènyi (ER) [30, 31] describes 
graphs with N nodes in which every link exists with probability p. The degree 
distribution in these networks is Poisson, hence the homogeneous structure in 
the sense that all nodes have degree close to the average degree <k> = p (N – 1). 
Also, in this model there is a critical probability value pc = 1/N under which the 
resulting network consists of small disconected components, and above which 
there is a giant component in the network containing O(N) nodes. All the net-
works are generated with p > pc and the sources of information are randomly 
placed in the giant component. Figure 6 shows the steady-state behaviour of the 
model for ER networks with 1000 nodes for different values of p. When in-
creasing p, the nodes have increasingly higher degree, and the probabilities of 
being in state I1 and I2 are well approximated by Eq. (14). Thus, the fraction of 
nodes in the network which have adopted each information type is accurately 
predicted by the approximation 

 1 22 1 1 2

2 1 1 2 1 2 2 1 1 2 1 2

I I
i i

N Na N ax , y
N a a N a a

δ δ
δ δ δ δ δ δ δ δ

= = = =
+ + + +

. (18) 

 

Figure 6. The steady state behaviour of the model for ER networks with N = 1000 for different 
values of p, depicting the fraction of nodes in each state. For every value of p the results  

are averages of 100 network realizations. The model has been run for 250 time units.  
The dashed lines are the approximations of the fraction of nodes supporting each information  

type as given with Eq. (18) 
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4.2. Watts-Strogatz small-world networks 

The Watts-Strogatz (WS) model [32] has been built to reproduce the 
property that many real-world networks, social networks among them, have 
very small average distance between nodes, on one hand, and a high clustering 
coefficient, on the other. The average distance between nodes in these networks 
is of the order of logN, and such networks are said to exhibit the small-world 
property. However, the small-world characteristic of the WS-model usually im-
plies both the small-world and the high clustering property. The algorithm for 
constructing a WS small-world network starts from a ring lattice where each 
node has 2K neighbours, K in the clockwise and K in the anticlockwise direc-
tion. Each edge is rewired with probability f, not allowing self-loops or multi-
ple edges between nodes. For the values of f that generate a small-world, a net-
work with densely connected neighbourhoods, whose size is regulated by K, is 
created, and some of the otherwise distant neighbourhoods are connected by 
long-range rewired links. 

Figures 7 and 8 depict the steady state behaviour of the model when the 
rewiring parameter f is varied. Results are given for networks generated with 
two different values of K. 

 

Figure 7. The steady-state behaviour of the model for WS networks for different values  
of f. The fraction of nodes in each state is depicted, as well as the clustering coefficient  

for the networks. Results are obtained by averaging over 100 network realizations for each value 
of f. Networks have N = 1000 nodes and were generated from a starting ring lattice with K = 10.  

The model has been run for t = 600 time units. The dashed lines are the approximations  
of the fraction of nodes supporting each information type as given with Eq. (18) 
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Figure 8. The steady-state behaviour of the model for WS networks for different values  
of f. The fraction of nodes in each state is depicted, as well as the clustering coefficient  

for the networks. Results are obtained by averaging over 100 network realizations for each value 
of f. Networks have N = 1000 nodes and were generated from a starting ring lattice with K = 20. 

The model has been run for t = 600 time units. The dashed lines are the approximations  
of the fraction of nodes supporting each information type as given with Eq. (18) 

Figure 8 shows that when nodes in the the starting lattice have degree 
which is high enough, the product terms in Eq. (8) tend to zero and the average 
number of nodes in each informed stae is again well approximated by Eq. (18). 
This does not happen in the case when nodes do not have high enough degree 
(Fig. 8). Also, the average clustering coefficient of each network, normalized 
by C(0) is shown on both figures, to indicate that the amount of clustering does 
not have an impact of the number of nodes reached by each information type, at 
difference with what we have observed for an alternate generalization of the 
SIS model [20]. 

4.3. Barabási-Albert power-law networks 

The Barabási-Albert (BA) model has been built to mimic another 
prevalent property of many real-world networks. Namely, it has been observed 
that real world networks have power-law degree distributions with an exponent 
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value that has usually lies between 2 and 3. Such degree distributions allow for 
a statistically significant probability for the existence of hubs, i.e. nodes that 
have unusually high degree. Networks with power-law degree distributions 
have been termed power-law networks. 

Here we use the original BA algorithm to construct the networks [33]. 
One starts from a seed of m0 connected nodes and adds a new node with 

0m m≤  links at each step. The nodes to which a new node is connected are 
chosen with probability proportional to their degree, and this rule of choosing 
nodes is known as preferential attachment. This yields a network with average 
degree <k> = 2m, and degree distribution 3

kP k −∝ . 

Figure 9 shows the average number of nodes in each state as a fraction 
of N, as the parameter m and consequently, the average degree <k>, is in-
creased. As m is increased the networks become denser and the nodes have in-
creasingly higher average degree, so that the approximations (17) for the frac-
tion of nodes reached by each information type hold. An interesting observation 
is that for low values of m, the BA topology appears to facilitate the spreading 
of the more attractive information. 

 
Figure 9. The average number of nodes in each state as a fraction of N for BA networks when m 
is varied. For each value of m, results are averaged over 100 network realizations and the model 
has been run for t = 250 time units. All networks are generated from a 20-node fully connected 

seed and have N = 1000. The dashed lines are the approximations of the fraction of nodes 
supporting each information type as given with Eq. (18), and squares indicate averages  

of the stable xi(t) and yi(t) values for the largest hub in the networks 
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5. CONCLUSIONS 

In this paper we make an attempt to study how two different informa-
tion types propagate and compete in a network. The model presented is a natu-
ral generalization of the SIS epidemic model. It describes the interactions 
among nodes, and general results for the interplay of the two information types 
on different topologies are given. The key points of this paper are as follows. 

• We suggest a discrete stochastic version for the SIS model with two in-
fective states for information spreading. We recover the classical result 
of an intrinsic network threshold 1/λ for the spreading process to occur, 
where λ is the largest eigenvalue of the network's adjacency matrix. 
Furthermore, we find that in this model both information types can co-
exist in the stable state, as opposed to what is reported in [23] for a 
continuous-time version of the same model with the Weierstrass prod-
uct inequality approximating the probability of receiving an informa-
tion type. The model has a unique stable fixed point, which implies ir-
relevance of the choice of initial information spreaders. 

• We find that when a node i has high degree, the probability of receiving 
information of any type from any combination of its infective 
neighbours tends to 1, and the probabilities to adopt information type 1 
or 2 are well approximated by 

 2 1

2 1 1 2 1 2
i

ax
a a

δ
δ δ δ δ

=
+ +

  

and  
1 2

2 1 1 2 1 2
i

ay ,
a a

δ
δ δ δ δ

=
+ +

 

 respectively. δ1 and δ2  are the rates of forgetting the information, and a1 
and a2 denote the attractiveness of each information type. Thus, when 
the degree of the nodes in an arbitrary network is high enough, the av-
erage fraction of nodes adopting each information type is, 

1I iN / N x=  
and 

2I iN / N y= . 

Future research directions are numerous. One can apply the methodolo-
gy of [29] to obtain better bounds on the probabilities of infection for the case 
when the degree of the nodes is not very high for the aforementioned approxi-
mations to hold. Comparing the model predictions to real data is a key question 
to its usefulness. Also, a generalization for an arbitrary number of information 
types is in order. 
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Р е з и м е 
 

МОДЕЛИРАЊЕ НА ШИРЕЊЕТО ИНФОРМАЦИИ  
ВО КОМПЛЕКСНИ МРЕЖИ 

Во оваа статија предложуваме модел за ширење на два типа информации во 
мрежи. Моделот е природна генерализација на епидемискиот модел susceptible-infective-
susceptible (SIS). Двете информации имаат различна атрактивност што, кога истовремено 
ќе стигнат кај даден јазел, влијае на одлуката на јазелот која информација да ја усвои. 
Моделот е во дискретно време и, наспроти вeрзијата на моделот во непрекинато време 
проучувана од други автори, го покажува истовременото постоење на двете информации во 
мрежата во стабилна состојба. Во статијта даваме апроксимации за просечниот број на 
јазли информирани со секоја информација на крајот од ширењето на информациите во 
случајот кога јазлите имаат голем степен. 

Клучни зборови: комплексни мрежи; динамички системи; нелинеарни системи; 
ширење на информации 
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