
ПРИЛОЗИ, Одделение за природно-математички и биотехнички науки, МАНУ, том 34, бр. 1–2, стр. 83–92 (2013)
CONTRIBUTIONS, Section of Natural, Mathematical and Biotechnical Sciences, MASA, Vol. 34, No. 1–2, pp. 83–92 (2013)

Received: September 10, 2013 ISSN 1857-9027
Accepted: October 22, 2013 UDC: 004.424.7.021:004.332.5

Original scientific paper

ANALYSIS OF ASSOCIATIVITY AND CONFLICT MISSES

Marjan Gusev*, Sasko Ristov

Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University,

Skopje, Republic of Macedonia

*Corresponding author, e-mail: marjan.gushev@finki.ukim.mk

Cache memory is playing a huge role in determining the performance when solving scientific problems. Most
of these problems include a high number of repetition of complex or simple calculations on various data elements
stored as arrays in sequential order in the memory. When executing the algorithms, these elements are brought to
cache and then used by the processor. This process is usually followed by conflict and capacity misses in the cache,
and the performance is degraded by a cache placement function, replacement policy or capacity constraints. In this
paper we analyze the algorithms and performance impact of set associative caches when a large array is referenced in
sequentially ordered memory. We map the problem of cache use into an IT related mathematical model to analyze the
performance and give a scientific explanation for performance drops due to associativity and conflict cache misses in
caches.

Key words: high performance computing; performance drops; shared memory multiprocessor; superlinear

speedup

INTRODUCTION

All modern processors use cache memory to
reduce the gap in the frequency between the slower
main memory and the faster CPU [1]. This is more
emphasized if data is reused several times (time
locality), thus reducing the average memory access
time. Another example where the cache speeds up
the execution are the algorithms that use data
locality, when the access of a given data element is
followed by an access of nearby elements. This is
also used in data arrays which are accessed
sequentially, in the same way they are stored in the
memory. Accessing the first element will initiate
accesses to next data in the cache.

Usual cache architectures organize data in
small blocks, called cache lines. Due to small
capacity, cache blocks can store number of data
arrays and the cache placement function determines
where these data are placed. When a data element is
required, the corresponding cache block has to be
fetched in the cache and replace another block.

Cache replacement policy decides which block will
be removed in this case.

Despite the advantages a cache memory
provides, time demanding or data intensive algo-
rithms usually use extensive data arrays stored
sequentially in the memory. Accessing only parts of
these arrays in caches follow various memory
access patterns, which can significantly reduce the
performance. A typical example is executing the
matrix multiplication algorithm, which is presented
in Figure 1. The figure presents the measured exe-
cution speed (Y-axis) measured in MFLOPS, as a
function of matrix size problem N (X-axis).

Performance drops are observed as a con-
sequence of associativity and conflict cache misses,
such as those for N = 128, 192, 256 (A), 384,
512(B), 640, 768, 896, 1024, … . We have reported
[2] that performance degradation is also observed
for regions starting from points E, C and D, i.e.
when

SpeedE >> SpeedC >> SpeedD

mailto:marjan.gushev@finki.ukim.mk

Marjan Gusev, Sasko Ristov

Contributions, Sec. Nat. Math. Biotech. Sci., 34 (1–2), 83–92 (2013)

84

despite the expectation that it should be the same
for each matrix size N.

Figure 1. Measured speed for matrix multiplication

executions

Let us briefly describe the reasons why these
performance drops happen. Sequential data arrays
can use specific data access patterns when identi-
fying a cache block, and instead of using all
available cache blocks, the algorithm might specify
the usage of only one or several cache blocks. This
is especially exposed by the associativity in the set
associative caches. Increasing the set associativity
will reduce the cache misses, but in the same time
will increase the access time, and vice versa.

In this paper we define a mathematical model,
based on analysis of data patterns in sequential array
and used mappings in set associative caches. This
analysis gives an explanation about performance
degradation that happens as a consequence of the
relation between the data access pattern and the
cache parameters.

The rest of the paper is organized as follows.
Firstly, the related work is presented. Then we
present the theoretical analysis of storage patterns,
mapping functions and their properties that initiate
conflict misses. After the presenting the experi-
mental proof about theoretical explanations for
given examples, we conclude our work and present
the plans for future work.

RELATED WORK

The cache set associativity impact to the

performance has been observed by many authors. For
example, Tsilikas and Fleury [3] reported perform-
ance drawbacks for some problem sizes when they
analyzed the interaction of matrix multiplication (non-
linear memory accesses) with the memory hierarchy.

Most explanations found in literature claim
that performance degradation happens due to con-
flict misses and do not give any further detailed
explanation. However, there were several engi-
neering solutions and proposals on how to avoid or

reduce associativity problems and cache conflict
misses. The conventional background for this is the
idea to change the storage data pattern and reduce
the average memory access time in set associative
cache. For example, Sen et al. [4] report how matrix
transposition can eliminate conflict misses in the
matrix multiplication and enable further faster
processing. The idea for padding the data to reshuffle
the data pattern will amortize the performance
drawback, since it will avoid associativity problem [5].

Several authors propose different cache orga-
nization and improving access time by hardware or
software optimization techniques. For example,
Hongil et al. [6] propose a dynamic and optimized
replacement policy for each cache set via workload
speculation mechanism. A new software runtime
library was designed by Ding et al. [7], which could
make the cache memory more intelligence in order to
allow the programmers to allocate arbitrary last level
cache space for various data sets of different threads.

In our recent research, we have analyzed the
cache associative problem for matrix multiplication
where the data pattern create performance drawback
for a specific matrix size N. We have theoretically
defined the matrix sizes as a function of cache pa-
rameters and experimentally proved the existence of
the critical points where maximum performance
drawbacks appear [8]. Our theory was proved also for
GPUs since they have also set associative cache [9].

THEORETICAL ANALYSIS

This section presents the theoretical bac-
kground of the performance analysis when acces-
sing a large sequentially ordered memory array by a
processor using cache memories.

CACHE MEMORIES

Caches are small memories, which use the

benefit of fast access by the processor. According
to the algorithms that map memory blocks onto
cache blocks we differ three main organizations of
caches: directly mapped, set-associative and fully
associative. A direct mapped cache maps a block
onto a specific location in the cache obtained by a
modulo function. In set associative caches, a block
is mapped onto a set and then onto a block within a
given set. A fully associative cache uses a strategy
when the block is mapped onto a location chosen
by a cache replacement strategy.

Мodern processors use a cache hierarchy of
2 or 3 cache levels and each level has different
parameters or strategy where a data element will be

Analysis of associativity and conflict misses

Прилози, Одд. pрир. маt. биоtех. науки, 34 (1–2), 83–92 (2013)

85

positioned, so in reality, a data element is mapped
onto a different position in all cache levels.

Each data element is found in a cache block
which is fetched from higher cache level or main
memory. A cache block or cache line in modern
processors may contain different number of data
elements depending on the cache line size and
memory data element representation. Memory
element representation might be a double precision
floating point number, which occupies 8 bytes of
memory. It may also be a single precision floating
point number or an integer, usually occupying 4
bytes of memory.

Suppose that the analyzed cache memory for
level Li, where i = 1,2,3 has MLi blocks. Let the size
of memory be Mmem, measured in cache blocks,
which is equal to the number of memory locations
(expressed in bytes) divided by the cache block
size. Similar to this, the number of blocks per each
cache MLi is equal to the cache size in bytes divided
by the cache block size.

Let us denote that the set associative cache on
level Li contains MLi sets and each set contains nLi
blocks. For each cache level i = 1, 2, 3 there is a sim-
ple relation that the size MLi is equal to the product of
number of sets SLi and their associativity nLi, and the
number of sets can be expressed as expressed in (1).

Li

Li
Li n

MS = (1)

The technology used to build faster caches is
such that the smaller the caches is, the faster it
works. Therefore, cache sizes on corresponding
levels satisfies (2).

ML1 < ML2 < ML3 < Mmem (2)

The following is an example of a real processor
with explanation of its cache hierarchy.

Example 1 (Specifics of AMD Opteron Processor).
Quad-Core AMD Opteron(tm) Processor 9550 [10]
has 4 cores each with its own dedicated 64 KB
instruction and 64 KB data L1 cache, dedicated
512KB L2 cache and share 2MB shared L3 cache.

Cache block (line) size is 64B in all cache
levels and when storing double precision flo-ating
numbers that use 8B presentation they can store 8
data elements and for single preci-sion floating
numbers and integers that use 4B presentation they
can store 16 data elements.

All caches use set-associative placing of cache
blocks. The associativity of L1 cache is nL1 = 2, and
raised to nL2 = 8 for L2 cache and to nL3 = 32 in L3
cache. From cache size and cache block size we

calculate that L1 cache has ML1 = 1024 blocks, L2
cache has ML2 = 8192, and L3 cache has ML3 = 32768
cache blocks. We conclude that (2) is satisfied.

The number of sets for L1 cache is SL1 = 512
and for both L2 and L3 caches it is SL2 = SL3 = 1024,
according to (1).

To simplify the notation in the following
analysis, we use M as total number of blocks in the
cache, S to express the number of sets in a set
associative cache, n the associativity, and finally, a
notation depending on the corresponding level in
the form of an index.

Definition 1 (Cache placement mappings). Let x
be the memory block that contains the location of a
data element requested by the algorithm. It is
mapped onto:
• a cache memory block with location x mod M

in a direct mapped cache;
• a set with identification x mod S in a set-

associative cache, and inside the set in one of
n ossible blocks determined by an appropriate
block replacement strategy; and

• an empty block or a block chosen by an
appropriate replacement strategy in a fully
associative cache.

A cache replacement policy chooses the Least
Recently Used (LRU) block to be replaced, or
chooses First In First Out (FIFO), random or similar
strategy to change the block within a given set.

Direct mapped caches are special cases where
the associativity is n = 1 and the number of sets is
equal to the total number of blocks S = M. A fully
associative cache is a special case where the number
of sets is S = 1 and associativity is n = M. In this
context we will continue to analyze only set associ-
ative caches.

Due to smaller capacity and cache associ-
ativity, there are cache misses when the processor
tries to access data element which is not found in
the memory. Cache compulsory misses appear as a
result of the cold start, when the cache is empty and
data elements are not loaded. Cache capacity
misses appear since the cache cannot store all
required data elements, and conflict misses appear
if the mapping function is such that requested data
elements are mapped in a smaller subset of blocks
than the available.

The next analysis gives an overview of
activities performed by the processor in a multi-
level cache organization. Let us analyze what hap-
pens when a processor would like to access a data
element within a block location x in memory. First,
the processor identifies where it is mapped in the
L1 cache level. Identification is done via mapping

Marjan Gusev, Sasko Ristov

Contributions, Sec. Nat. Math. Biotech. Sci., 34 (1–2), 83–92 (2013)

86

by modulo function of SL1. Then it is searched in
the identified set and if not found in nL1 available
positions, a cache miss is generated. The same
procedure continues on the L2 cache level and then
on the L3 cache level.

Suppose that the block is found on L2 cache
level. Let us describe the activities that start after
cache hit on a higher level and miss on analyzed
cache level. A cache replacement policy decides
which block will be replaced and the corresponding
block is placed in the identified cache block. The
activities are recognized as penalty, since more clock
cycles will be used to replace the block and use the
requested data element from identified cache block.

STORAGE PATTERNS

Main memory is a sequentially ordered list of

data elements, and elements are accessed via their
address. However, a cache memory does not use
sequential ordering, as explained earlier, there are
different cache organizations.

The problems analyzed in this paper concern
mapping of elements from a linearly ordered list to
a specific cache storing organization. During this
mapping, a serious number of cache misses might
appear and result in performance drops.

The side effects of using set associative
caches is that an algorithm might require a series of
data elements, which map onto a same cache set,
and due to the cache placement, the mapping and
replacement policy might be an operation that
prevents using the cache benefits. On contrary it
generates conflict misses and huge performance
drops. In this paper we analyze these mappings
determined by the cache organization and give
conclusions on how to reorganize data elements
and obtain more efficient algorithms.

We do not tackle cache architecture addres-
sing modes, calculation of index, tag and other
cache specific organization features that determine
the architecture and organization of caches, but
rather analyze how algorithms can efficiently use
cache hierarchy.

Most of the analysis in cache design are per-
formed on average behavior of benchmark programs.
Various attempts have been made to reduce the cache
misses and suggest an organization that will have
overall best performance, including reducing miss
rates with different associativity, victim caches, and
compiler optimization, than reducing miss penalties
with faster DRAM memories and writ buffers and
reducing hit times [1]. Compiler optimizations include
loop fusion, loop interchange or techniques to merge
arrays. Various conclusions are brought, like lower

associativity reduces the hit time, which is of high
concern for L1 cache and miss penalty is critical for
L2 caches, since it is larger.

In this paper we analyze the algorithms and
suggest their reorganization to avoid conflict cache
misses as much as possible. We assume that the
algorithms will use the benefit of a cache block
(line) prefetching and when a data element is
accessed then the algorithm is supposed to use all
data elements from the cache block. Therefore in
the next analysis we refer to cache blocks rather
than to data element access. Denote a series of
memory accesses produced by an algorithm as an
array by Definition 2.

Definition 2 (Request Block Array (RBA)). RBA
is an array of memory block locations, denoted by
x0, x1, x2, …, where each element of this array x is
equal to a cache block location for a block that
contains data elements sequentially requested by
the algorithm instructions.

Let us start defining properties of RBA of
blocks, as presented in Definition 3. We assume
that there is a uniform pattern (equidistance) be-
tween two consecutive elements in the RBA.

Definition 3 (Block location offset). Let there be
an algorithm that generates a RBA of K block loca-
tions, denoted by x0, x1, x2, …, xK-1. Block location
offset f is obtained as a difference of block loca-
tions requested in consequent instructions

f = xi+1 – xi, where i < K.

Example 2 gives an overview of an existing

algorithm and a RBA.

Example 2 (Matrix multiplication algorithm). To
simplify the algorithm presentation we suppose that
matrices have dimension N·N, i.e. N is the matrix
size, and the native version of the matrix
multiplication algorithm is

CN·N = AN·N · BN·N

Suppose that all the data elements are double
precision and each occupies 8 bytes. This means
that the input matrices A = [aij],i,j = 0, … , N – 1 and
B = [bij],i,j = 0, … , N – 1, and also the result matrix
C = [cij],i,j = 0, … , N – 1 consist of data elements,
which are stored sequentially in the main memory.

The algorithm contains the following compu-
tations

kj

N

k
ikij bac .

1

0
∑

−

=

=

Analysis of associativity and conflict misses

Прилози, Одд. pрир. маt. биоtех. науки, 34 (1–2), 83–92 (2013)

87

At the beginning, the algorithm specifies
instructions that request a sequence of memory
column elements b0j,b1j,b2j,…,. Due to sequential
ordering in the main memory if the matrix size is
N > 8 and the cache block size is 8 data elements,
then each data element of this array is stored in a
different cache block. In this case, RBA presents an
array of N different cache blocks, for each iteration
that uses a certain matrix column.

Each column element will be found in a block
located on memory address MA(bij) = MA(b00) + i · N
+ j. The corresponding block is determined by the
following block location x(bij) = MA(bij) DIV 8 since
there are 8 data elements in a cache block.

The algorithm starts with i = 0 and j = 0, and
then sequentially requests the elements of the first
matrix column, i.e. the elements b00,b10,b20, …,.The
first data element to be requested by the processor
is found in block x0 = x(b00) = x. Assuming that N =
512 the next data element to be requested is found
in block with location x1 = x(b10) = MA(b10) DIV 8 =
x + 64. Therefore, for N = 512 the corresponding
RBA of blocks x0, x1, x2, …, is equal to

x, x + 64, x + 128, x + 192, … (3)

It follows that the block location offset is

f = 64.
The next two lemmas can be proven by the

Dirichlet’s box principle (or Pigeonhole principle),
which states that if there are more balls to be put
than the number of available boxes, then at least
one box must contain more than one ball. It is a
simple counting argument, and can have several
other versions, such as the one which states that it
is not possible to place more than K balls in K
different places, or there does not exist an injective
function on finite sets whose codomain is smaller
than its domain.

Lemma 1 gives a constraint about the capacity
cache misses since caches are small memories.

Lemma 1. A capacity cache miss appears if the
number of RBA blocks K is higher than the number
of available cache blocks MLi, i.e., K > MLi.

Lemma 2 follows an analysis that shows how
RBA will be mapped in the cache memory. The worst
scenario is when set associative caches may map all
RBA blocks onto a single set and direct mapped
caches onto a single block location in the cache.

Lemma 2. A conflict cache miss appears if at least
n RBA blocks are mapped onto a single set of a
cache memory with associativity value of n.

So, if the associativity is n, then at most n
blocks can be placed in one cache set. The cache

conflict appears if the algorithm maps more than n
RBA blocks onto a cache set.

In case of direct mapped caches, a conflict
cache miss appears if two RBA blocks map onto a
same cache block. In case of set-associative caches,
a conflict miss may not appear, since there is one
set and the problems might appear only as capacity
misses, where the number of used blocks is higher
than the available blocks.

The next analysis presents conditions for
appearance of conflict misses. Let us analyze two
blocks xk and xl of the RBA. According to Definition
1, a block is mapped onto a cache set on level Li
identified with modulo function, and denote mapped
values by y(xk) = xk MOD SLi and y(xl) = xl MOD SLi.
We would like to express the condition that maps
these two blocks xk and xl of the RBA onto one set in a
set associative cache, i.e. y(xk) = y(xl). It follows that
xk ≡ xl mod SLi. This proves Lemma 3.

Lemma 3. A conflict cache miss appears in a cache
level Li if there are at least n blocks in RBA which
have the same value of modulo function mod SLi.

As a consequence of Lemma 3 we are
interested in analyzing where the blocks of RBA
will be mapped according to modulo functions of
the block locations. Definition 4 defines an array
obtained by mapping the RBA.

Definition 4 (Mapped Block Array (MBA)). MBA
is an array of K cache block locations y0, y1, y2, …, yK-

1, where each block yi is obtained as a mapped block
location from a RBA block xi, mapped by a
corresponding mapping function used in the
appropriate cache level.

Arrays MBA and RBA have the same
number of elements K. Values of RBA are in the
range from 0 to the number of blocks in the
memory Mmen i.e., 0 ≤ xi ≤ Mmen for 0 ≤ i < K. Values
of MBA are in the range from 0 to the number of
sets in the set associative cache S, that is 0 ≤ yi < S
for 0 ≤ i < K.

The whole associativity problem can now
have a different formulation by analyzing the
properties of RBA and MBA. Definition 5 presents
some properties of MBA.

Definition 5 (Set of MBA destinations). Let there
be a MBA obtained by applying modulo functions r
of corresponding RBA blocks for a set associative
cache with S sets. The set of MBA destinations R is
the set of d different elements of MBA, such that

R = {ri, 0 ≤ i < d} where

0 ≤ ri < S, and ri ≠ rj for 0 ≤ i,j < d, i ≠ j.

Marjan Gusev, Sasko Ristov

Contributions, Sec. Nat. Math. Biotech. Sci., 34 (1–2), 83–92 (2013)

88

By analyzing the properties of MBA we can
conclude that there are two extremes while map-
ping the blocks. The first extreme is found by a
uniform distribution of elements, i.e. cache blocks
are uniformly mapped in all cache sets. In this case
there is no associativity problem and only cache
capacity problem may appear.

In reality, modulo functions map cache blocks
in a smaller number of sets than the available number
of sets. A simple conclusion follows that the problems
will start if d < S, i.e. when smaller number of cache
blocks are used than the number of available blocks.
The second analyzed extreme where highest associ-
ativity problems will appear is when d = 1, since only
one set will be used instead of whole cache.

However, conflict misses do not appear in all
cases when MBA blocks are distributed in smaller
number of sets. The associativity value, shows that
there are n blocks available in each set, so we also
have to analyze this capacity by analyzing the
problem "how many blocks will map in a particular
set". If this number is greater than the associativity
value, than the conflict cache misses will start to
generate.

ANALYSIS OF CONFLICT MISSES

The following analysis shows that the
distribution pattern of requested data elements is
mostly generated by nested loops which represent
recursions and iterations. It means that most of
these cases actually use FOR NEXT (or WHILE
DO, or REPEAT UNTIL) loops, which imply
regular pattern in the algorithms, that usually refer
to sequentially ordered blocks. Each algorithm
request defines a certain offset f in this sequentially
ordered list, so the mapping modulo function can
be rather easily calculated.

Assume that the first instruction requests a data
element from a block with location x. It is mapped
onto a set identified with y = x MOD S. The next
request according to the algorithm is for a block found
on offset f, meaning that the next requested block is
located on x + f and the mapped set is (x + f) MOD S.
A conflict might appear in cases when they map onto
a same set, i.e. if f ≡ 0 MOD S.

There might be a case when a multiple number
of f is equal to the number of sets S. In more general
case there is a positive integer number that determines
multiple factor of f that equals the number of sets. The
following analysis presents the value of this integer.

Theorem 1. If an algorithm specifies an offset of f
blocks in the RBA of blocks such that

d · f = S (4)

then there are exactly d different positions where
the RBA blocks will be mapped, i.e. the number of
different elements in MBA is d.
Proof. Proof can be constructed using the
properties of the modulo functions. Let the RBA be

x, x + f, x + 2 · f, …

We can construct MBA with elements

x MOD S, (x + f) MOD S, (x + 2f) MOD S, …

Since d · f = S, it follows that (x + d ·f) MOD S = x
MOD S, and the following array elements start again
to follow the same pattern. We can identify that the
different values of reminders is d.

If d = 1 then f = S and there is exactly one set
where the blocks will be mapped and conflict cache
misses will start to appear after n iterations of the
algorithm.

If d > 1 then f · d = S and the conflict cache
misses will start to appear after d · n iterations of
the algorithm. The following analysis gives the
necessary condition for appearance of conflict
cache misses.
Theorem 2. Conflict cache misses will appear if
the associativity is smaller than the number of
blocks mapped onto a given set in a set-associative
cache memory, if there are d diffe-rent sets where
the blocks will be mapped, i.e.

d
Kn < (5)

Proof 2. According to Definition 3 the number of
RBA blocks is K . Therefore, at least

d
K blocks

will be mapped onto one set. Relation (5) is derived
according to Dirichlet box principle that there are
at most n positions, where these blocks will be
placed.

Note that we have analyzed this phenomenon
from a different aspect in [8] and derived the same
result from a very different perspective. The
following example illustrates the RBA of blocks
and results obtained in theorems 1 and 2.
Example 3 (Conflict cache misses for MMA with
N = 512). Analyze the MMA algorithm as presented
in Example 2 for N = 512 and its execution on the
AMD Opteron processor described in Example 1.
There are 8 data elements in each cache block, and

Analysis of associativity and conflict misses

Прилози, Одд. pрир. маt. биоtех. науки, 34 (1–2), 83–92 (2013)

89

SLi = 512. We also suppose that the first matrix
column element is found in a block with location x.

The processor tries to identify each
requested block in the L1 cache and maps it onto a
specific set, determined by the mapping function
expressed in Definition 1. Each block will be
mapped to a set location

y(bij) = x(bij) MOD SL1 = (MA(bij)DIV 8) MOD SL1

in the L1 cache.
The RBA of blocks, as presented in (3), will

be mapped onto L1 cache set locations and form a
MBA y0, y1, y2, …, equal to y(b00), y(b10), y(b20), …

We can also calculate that y(bi0)=(x+64 · i)
MOD 512. As an illustration, if x ≡ 0 MOD 512,
then the MBA will be

0, 64, 128, 192, 256, 320, 384, 448, 0, 64, 128, …

According to Definition 3, it follows that f =
x(b(i + 1)0) · x(b(i0) = 64.

We can calculate from Theorem 1 that d = 8
satisfies (4) and it follows that the blocks will be
mapped in exactly 8 sets. According to Definition 3,
there are N = 512 iterations and N = K = 512
blocks in RBA for each iteration. Theorem 2 shows
that there are 64=

d
N blocks to be placed onto one

set. Since the associativity of L1 cache is nL1 = 2
there will be at least 64 – 2 = 62 conflict misses for
each iteration accessing a column matrix, reaching
62/64 = 96.87% conflict misses.

The number of sets for both L2 and L3
caches is 1024, and it follows that 16==

f
sd .

The number of blocks to be placed onto one set is

32
16
512 ==

d
K The associativity for L2 is nL2 = 8 and

for L3 is nL3 = 32. It means that conflict misses will
appear for L2 and for L3 cache it will reach the
boundary condition. There will be 32 – 8 = 24
conflict misses for L2 out of 32 accesses, reaching
24/32 = 75% conflict misses. Since the matrix A
will occupy some blocks that are to be scheduled
within previous analysis for matrix B column, it
means that there will be at least some conflict
misses in the L3 cache although 32 blocks are to be
scheduled in 32 available places.

The previous analysis assumed that multiple
number of f equals to S, or when f is divisor of S.
However, a more general case will be when f and S
have a common divisor, or f > S. The following
analysis presents this case.

Theorem 3 If an algorithm specifies an offset of f
blocks in the RBA of blocks such that the greatest

common divisor of f and S is a positive integer
g = GCD(f, S) > 1, then

,·· Skfd = where
g
sd = and

g
fk = (6)

There are exactly d different sets in MBA (where
the RBA blocks will be mapped).

Proof. Let us analyze the RBA of blocks

x,x + f,x + 2 · f, …

and construct MBA with the elements

x MOD S, (x + f) MOD S,(x + 2 · f) MOD S, …

Since d · f = k · S, it follows that

(x + d · f) MOD S = x MOD S (7)

and the following array elements start again to follow
the same pattern. Due to the definition of d as the
smallest number such that (7) holds and the number
of different reminders modulo S is exactly d.

Since Theorem 3 proves that the number of
different sets is d, we can also confirm the eligibility
of Theorem 2. The following example presents the
analyzed more general case.

Example 4 (Conflict cache misses for MMA with
N = 768). We assume that the MMA algorithm
presented in Example 2 is executed on the AMD
Opteron processor described in Example 1 for N =
768. There are K = N = 768 iterations and K = N
= 768 elements of RBA for each iteration. In this
case the block address offset is f = x(b(i + 1)0) – x(bi0)
= 96 Theorem 3 can be applied, since f is not a
divisor of S.

The corresponding RBA of blocks x(b00),
x(b10), x(b20), … is equal to

x, x + 96, x + 192, x + 288, x + 384, …

As an illustration, if x ≡ 0 MOD 512, then

MBA y(b00), y(b10), y(b20), … is

0, 96, 192, 288, 384, 480, 576, 768, 864, 960, 1056,
1152, 1248, 1344, 1440, 0, 96, …

Let us analyze properties of MBA. According

to Theorem 3, g = GCD(f, S) = 32. Then we
calculate d = 16, and it satisfies (6). It follows that
the blocks will be mapped in exactly 16 sets.
According to Definition 3 there are N = 768
iterations and blocks in both RBA and MBA for
each iteration. Theorem 2 shows that there are

Marjan Gusev, Sasko Ristov

Contributions, Sec. Nat. Math. Biotech. Sci., 34 (1–2), 83–92 (2013)

90

48=
d
K blocks to be placed onto one set. Since the

associativity is nL1 = 2 the number of conflict misses
is 46 out of 48 accesses, reaching 46/48 = 95.83%
cache misses.

The number of sets for both L2 and L3 is 1024,

it follows that 32==
g
sd . The number of blocks to

be placed onto one set is .24
32
768 ==

d
K The

associativity for L2 is nL2 = 8 and for L3 is nL3 = 32,
which means that conflict misses will appear for L2,
but not for L3 cache. There will be 24 – 8 = 16
conflict misses for L2 out of 24 accesses, reaching
66.67% conflict misses.

RESULTS AND DISCUSSION

In this section we conduct experiments to

prove the theoretical analysis explained in previous
section and explain the conflict cache misses. The
experiments are conducted using the Opteron
processor [10], whose characteristics are explained
in Example 1. The testing algorithm is matrix
multiplication, as presented in Example 2.

The diagrams on figures 2, 3 and 4 present
the area around these points, (five points –40, –32,
–24, –16 and –8 bellow the expected negative
impulses and five points +8, +16, +24, +32 and +40
above the matrix size where performance drop is
expected). The x-axis presents the matrix size N in
each figure in this section and the y-axis depicts the
measured speed in MFLOPS.

Figure 2: Speeds in the area around N = 256

Firstly, we shall illustrate the case where the
capacity misses appear, as discussed in Lemma 1.
In Example 1 we have presented that L2 cache has
associativity nL2 = 8, and the number of sets is SL2 =
1024, meaning that the number of cache blocks is
ML2 = 8192. The cache block size fits 8 data

elements and there is possibility to store a total of
65536 data elements.

Suppose that there is uniform distribution of
data elements of one matrix in all sets in the L2
cache. It means that N · N data elements will fit in
the available number until the capacity problems
appear. In this case, we calculate that N = 256. If
N > 256, then the capacity misses will start to raise,
as presented in Figure 2. This is why the measured
speed has decreasing trend for N > 256, while for <
256 it has almost horizontal stable value. Note that the
capacity misses will start earlier (for smaller N), since
the algorithm needs two matrices to be stored in the
cache, but the nature of the algorithm is to use a row
of matrix A and the whole matrix of B to fulfill each
iteration column by column. However, expressive
cache capacity misses will appear for specified N,
since the column matrix elements will initiate conflict
misses with some of the elements of A.

The peak in N = 256 appears due to
associativity problems. We calculate that each
column data element, as requested by the algo-
rithm, is on memory address offset N = K = 256

and 32
8

== Nf , since there are 8 data elements in

each cache block. Analyzing L1 cache with SL1 =
512 sets we obtain d = 16, according to Theorem 1.
The number of sets in L2 and L3 is 1024 and we
obtain that d = 32 in these cases.

The existence of associativity misses is
shown by Theorem 2. The values for associativity
are nL1 = 2, nL2 = 8 and nL3 = 32. Since N = K = 256

per each iteration, we calculate that 16
16
256 ==

d
K

for L1 cache, and 8
32
256 ==

d
K for L2 and L3

caches. It appears that the conditions in Theorem 2
are satisfied for L1 and L2 caches, but not for L3
cache, i.e. associativity problems appear only in L1
and L2 caches.

The number of conflict misses in L1 cache is

142161 =−=− Ln
d
K , meaning that 14 cache

misses will appear in 16 accesses, i.e. 14/16 =
87.5% of data accesses will be conflict misses. The
analysis for L2 shows that 8 blocks have to be
placed in 8 available places. In the previous
analysis we assumed only the distribution of the B
matrix. However, matrix elements of A occupy at
least one set and conflict misses appear even
earlier. Additionally, L1 cache misses initiate addi-
tional cache misses in the L2 cache.

Analysis of associativity and conflict misses

Прилози, Одд. pрир. маt. биоtех. науки, 34 (1–2), 83–92 (2013)

91

We continue to present details of those
matrix sizes analyzed in Examples 3 and 4,
correspondingly for N = 512 and N = 768.

The results for Example 3 present the area of
N = 512 and Figure 3 depicts the achieved speed.
Performance drop for N = 512 is evident in
comparison to the neighboring points. The speed
has a negative trend, as shown for the previous
analysis of N = 512 due to increased capacity misses.

Figure 3: Speeds in the area around N = 512

Figure 4 depicts the achieved speed in the area
of N = 768, theoretically analyzed in Example 4.

Figure 4: Speeds in the area around N = 768

Similarly to the previous case, the theoretical
analysis is proved and the speed has decreased in
the analyzed point.

CONCLUSIONS

In this paper we present an analysis of
associativity and conflict misses in set associative
caches. The analysis is performed by analyzing
storage patterns and mapping functions used in
caches to store blocks.

We define RBA, as an array of blocks that is
generated by accesses defined in the algorithm.
This array is mapped via modulo functions onto
MBA, as array of block locations in the cache. This
mapping is dependent on cache hardware charac-
teristics and therefore we analyze relations among
data arrays used in algorithms and hardware cache
parameters.

Analysis of properties of the MBA using
congruences and modulo functions shows that
specific problems with RBA with K blocks and
algorithm property of address offset f can correlate
with the number of sets S in the set associative
cache. The relation shown in Theorem 1 explicitly
determines the number of used blocks in the set
associative cache instead of using all available
blocks. This phenomenon generates conflict misses
and initiates performance degradation if conditions
defined in Theorem 2 are fulfilled. This is illustrated
by an example, that covers a case study for N = 512
and later on by experimental proof.

Theorem 1 covers only cases when the
matrix size is a divisor of the number of sets in set
associative cache. However, we also analyzed cases
when the matrix size and number of sets might
have a common divisor. Theorem 3 covers this
case, as a general approach of the associativity
problem. Therefore, we illustrate a theoretical ex-
planation in the example with case study for N = 768
corresponding experimental proof.

These results can be used in specifying algo-
rithms, by providing a careful analysis of associa-
tivity and conflict cache misses for a given data
array size and storage pattern used in a repetitive
algorithm. If the analysis shows that the associativity
will initiate conflict misses, we can increase the data
array or change the algorithm pattern to avoid conflict
misses, and yet effectively use the cache exploiting
time and data locality properties.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, Computer

Architecture, Fifth Edition: A Quantitative Approach.
MA, USA: Elsevier, 2012.

[2] M. Gusev and S. Ristov, A superlinear speedup
region for matrix multiplication, Concurrency and
Computation: Practice and Experience, 2013.

[3] G. Tsilikas and M. Fleury, Matrix multiplication
performance on commodity sharedmemory multi-
processors, in International Conference on Parallel
Computing in Electrical Engineering, PARELEC
2004, Sept. 2004, pp. 13 – 18.

[4] S. Sen, S. Chatterjee, and N. Dumir, Towards a
theory of cache-efficient algorithms, Journal of
the ACM (JACM), 49 2002 pp. 828–858.

[5] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K.
Yelick, and J. Demmel, Optimization of sparse
matrix-vector multiplication on emerging multi-
core platforms, Parallel Computing, 35 2009 pp.
178–194.

[6] H. Yoon, T. Zhang, and M. H. Lipasti, Sip:
Speculative insertion policy for high performance

Marjan Gusev, Sasko Ristov

Contributions, Sec. Nat. Math. Biotech. Sci., 34 (1–2), 83–92 (2013)

92

caching, Computer Sciences Department
University of Wisconsin-Madison, Tech. Rep.
1676, 2010.

[7] X. Ding, K. Wang, and X. Zhang, Ulcc: a user-
level facility for optimizing shared cache
performance on multicores, in Proceedings of the
16th ACM Symposium on Principles and practice
of parallel programming, ser. PPoPP ’11. ACM,
2011, pp. 103–112.

[8] M. Gusev and S. Ristov, Performance gains and
drawbacks using set associative cache, Journal of

Next Generation Information Technology (JNIT),
3, 31 Aug 2012,pp. 87–98.

[9] L. Djinevski, S. Arsenovski, S. Ristov, and M.
Gusev, Performance drawbacks for matrix multi-
plication using set associative cache in gpu devices,
in MIPRO, 2013 Proceedings of the 36th Interna-
tional Convention, IEEE Conference Publications,
Croatia, 2013, pp. 213–218.

[10] CPU-world. (2013, Sep.) AMD Opteron(tm) 8347
@ONLINE. [Online]. Available: http://www.cpu-
world.com/CPUs/K10.

АНАЛИЗА НА ПРОМАШУВАЊА ПОРАДИ АСОЦИЈАТИВНОСТ И КОНФЛИКТ

Марјан Гушев, Сашко Ристов

Факултет за информатички науки и компјутерско инженерство,

Универзитет „Св. Кирил и Методиј“, Скопје, Рeпублика Македонија

Кеш-меморијата игра голема улога во определувањето на перформансите при решавање на научни
проблеми. Многу од овие проблеми вклучуваат голем број на повторувања на сложени или едноставни
пресметки врз различни податочни елементи складирани како низи во секвенцијален редослед во меморијата.
При извршување на алгоритмите, овие елементи се преземаат во кеш-меморијата и тогаш се користат од
процесорот. Овој процес вообичаено е проследен со промашувања во кеш-меморијата поради конфликти или
капацитет, а перформансите се намалени од функцијата за сместување во кеш-меморијата, политиката на
замена во кеш-меморијата или од ограничувањето на капацитетот.

Во овој труд го анализираме влијанието на алгоритмите и перформансите од сет-асоцијативната кеш-
меморија кога е референцирана голема низа во секвенцијално подредената меморија. Пресликан е проблемот
на користењето на кеш-меморијата во математички модел базиран на ИТ за да се анализираат перформансите
и да се даде научно објаснување за падовите на перформансите поради промашувањата во кеш-меморијата
предизвикани од асоцијативноста и конфликтот.

Клучни зборови: Пресметување со високи перформанси; пад на перформанси; мулти-процесор со

споделена меморија; супер-линеарно забрзување

	[3] G. Tsilikas and M. Fleury, Matrix multiplication performance on commodity sharedmemory multiprocessors, in International Conference on Parallel Computing in Electrical Engineering, PARELEC 2004, Sept. 2004, pp. 13 – 18.
	[9] L. Djinevski, S. Arsenovski, S. Ristov, and M. Gusev, Performance drawbacks for matrix multiplication using set associative cache in gpu devices, in MIPRO, 2013 Proceedings of the 36th International Convention, IEEE Conference Publications, Cr...
	[10] CPU-world. (2013, Sep.) AMD Opteron(tm) 8347 @ONLINE. [Online]. Available: http://www.cpu-world.com/CPUs/K10.

