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Cache memory is playing a huge role in determining the performance when solving scientific problems. Most 
of these problems include a high number of repetition of complex or simple calculations on various data elements 
stored as arrays in sequential order in the memory. When executing the algorithms, these elements are brought to 
cache and then used by the processor. This process is usually followed by conflict and capacity misses in the cache, 
and the performance is degraded by a cache placement function, replacement policy or capacity constraints. In this 
paper we analyze the algorithms and performance impact of set associative caches when a large array is referenced in 
sequentially ordered memory. We map the problem of cache use into an IT related mathematical model to analyze the 
performance and give a scientific explanation for performance drops due to associativity and conflict cache misses in 
caches. 
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INTRODUCTION 
 

All modern processors use cache memory to 
reduce the gap in the frequency between the slower 
main memory and the faster CPU [1]. This is more 
emphasized if data is reused several times (time 
locality), thus reducing the average memory access 
time. Another example where the cache speeds up 
the execution are the algorithms that use data 
locality, when the access of a given data element is 
followed by an access of nearby elements. This is 
also used in data arrays which are accessed 
sequentially, in the same way they are stored in the 
memory. Accessing the first element will initiate 
accesses to next data in the cache. 

Usual cache architectures organize data in 
small blocks, called cache lines. Due to small 
capacity, cache blocks can store number of data 
arrays and the cache placement function determines 
where these data are placed. When a data element is 
required, the corresponding cache block has to be 
fetched in the cache and replace another block. 

Cache replacement policy decides which block will 
be removed in this case. 

Despite the advantages a cache memory 
provides, time demanding or data intensive algo-
rithms usually use extensive data arrays stored 
sequentially in the memory. Accessing only parts of 
these arrays in caches follow various memory 
access patterns, which can significantly reduce the 
performance. A typical example is executing the 
matrix multiplication algorithm, which is presented 
in Figure 1. The figure presents the measured exe-
cution speed (Y-axis) measured in MFLOPS, as a 
function of matrix size problem N (X-axis).  

Performance drops are observed as a con-
sequence of associativity and conflict cache misses, 
such as those for N = 128, 192, 256 (A), 384, 
512(B), 640, 768, 896, 1024, … . We have reported 
[2] that performance degradation is also observed 
for regions starting from points E, C and D, i.e. 
when 

 
SpeedE >> SpeedC >> SpeedD 
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despite the expectation that it should be the same 
for each matrix size N. 

 
 

  
Figure 1. Measured speed for matrix multiplication 

executions 
 
 

Let us briefly describe the reasons why these 
performance drops happen. Sequential data arrays 
can use specific data access patterns when identi-
fying a cache block, and instead of using all 
available cache blocks, the algorithm might specify 
the usage of only one or several cache blocks. This 
is especially exposed by the associativity in the set 
associative caches. Increasing the set associativity 
will reduce the cache misses, but in the same time 
will increase the access time, and vice versa. 

In this paper we define a mathematical model, 
based on analysis of data patterns in sequential array 
and used mappings in set associative caches. This 
analysis gives an explanation about performance 
degradation that happens as a consequence of the 
relation between the data access pattern and the 
cache parameters. 

The rest of the paper is organized as follows. 
Firstly, the related work is presented. Then we 
present the theoretical analysis of storage patterns, 
mapping functions and their properties that initiate 
conflict misses. After the presenting the experi-
mental proof about theoretical explanations for 
given examples, we conclude our work and present 
the plans for future work. 

 
RELATED WORK 

 
The cache set associativity impact to the 

performance has been observed by many authors. For 
example, Tsilikas and Fleury [3] reported perform-
ance drawbacks for some problem sizes when they 
analyzed the interaction of matrix multiplication (non-
linear memory accesses) with the memory hierarchy. 

Most explanations found in literature claim 
that performance degradation happens due to con-
flict misses and do not give any further detailed 
explanation. However, there were several engi-
neering solutions and proposals on how to avoid or 

reduce associativity problems and cache conflict 
misses. The conventional background for this is the 
idea to change the storage data pattern and reduce 
the average memory access time in set associative 
cache. For example, Sen et al. [4] report how matrix 
transposition can eliminate conflict misses in the 
matrix multiplication and enable further faster 
processing. The idea for padding the data to reshuffle 
the data pattern will amortize the performance 
drawback, since it will avoid associativity problem [5].  

Several authors propose different cache orga-
nization and improving access time by hardware or 
software optimization techniques. For example, 
Hongil et al. [6] propose a dynamic and optimized 
replacement policy for each cache set via workload 
speculation mechanism. A new software runtime 
library was designed by Ding et al. [7], which could 
make the cache memory more intelligence in order to 
allow the programmers to allocate arbitrary last level 
cache space for various data sets of different threads. 

In our recent research, we have analyzed the 
cache associative problem for matrix multiplication 
where the data pattern create performance drawback 
for a specific matrix size N. We have theoretically 
defined the matrix sizes as a function of cache pa-
rameters and experimentally proved the existence of 
the critical points where maximum performance 
drawbacks appear [8]. Our theory was proved also for 
GPUs since they have also set associative cache [9]. 
 

THEORETICAL ANALYSIS 
 

This section presents the theoretical bac-
kground of the performance analysis when acces-
sing a large sequentially ordered memory array by a 
processor using cache memories. 

 
CACHE MEMORIES 

 
Caches are small memories, which use the 

benefit of fast access by the processor. According 
to the algorithms that map memory blocks onto 
cache blocks we differ three main organizations of 
caches: directly mapped, set-associative and fully 
associative. A direct mapped cache maps a block 
onto a specific location in the cache obtained by a 
modulo function. In set associative caches, a block 
is mapped onto a set and then onto a block within a 
given set. A fully associative cache uses a strategy 
when the block is mapped onto a location chosen 
by a cache replacement strategy. 

Мodern processors use a cache hierarchy of 
2 or 3 cache levels and each level has different 
parameters or strategy where a data element will be 
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positioned, so in reality, a data element is mapped 
onto a different position in all cache levels. 

Each data element is found in a cache block 
which is fetched from higher cache level or main 
memory. A cache block or cache line in modern 
processors may contain different number of data 
elements depending on the cache line size and 
memory data element representation. Memory 
element representation might be a double precision 
floating point number, which occupies 8 bytes of 
memory. It may also be a single precision floating 
point number or an integer, usually occupying 4 
bytes of memory. 

Suppose that the analyzed cache memory for 
level Li, where i = 1,2,3 has MLi blocks. Let the size 
of memory be Mmem, measured in cache blocks, 
which is equal to the number of memory locations 
(expressed in bytes) divided by the cache block 
size. Similar to this, the number of blocks per each 
cache MLi is equal to the cache size in bytes divided 
by the cache block size. 

Let us denote that the set associative cache on 
level Li contains MLi sets and each set contains nLi 
blocks. For each cache level i = 1, 2, 3 there is a sim-
ple relation that the size MLi is equal to the product of 
number of sets SLi and their associativity nLi, and the 
number of sets can be expressed as expressed in (1). 

Li

Li
Li n

MS =                                                   (1) 

The technology used to build faster caches is 
such that the smaller the caches is, the faster it 
works. Therefore, cache sizes on corresponding 
levels satisfies (2). 
 

ML1 < ML2 < ML3 < Mmem                               (2) 
 

The following is an example of a real processor 
with explanation of its cache hierarchy. 

Example 1 (Specifics of AMD Opteron Processor). 
Quad-Core AMD Opteron(tm) Processor 9550 [10] 
has 4 cores each with its own dedicated 64 KB 
instruction and 64 KB data L1 cache, dedicated 
512KB L2 cache and share 2MB shared L3 cache.  

Cache block (line) size is 64B in all cache 
levels and when storing double precision flo-ating 
numbers that use 8B presentation they can store 8 
data elements and for single preci-sion floating 
numbers and integers that use 4B presentation they 
can store 16 data elements. 

All caches use set-associative placing of cache 
blocks. The associativity of L1 cache is nL1 = 2, and 
raised to nL2 = 8 for L2 cache and to nL3 = 32 in L3 
cache. From cache size and cache block size we 

calculate that L1 cache has ML1 = 1024 blocks, L2 
cache has ML2 = 8192, and L3 cache has ML3 = 32768 
cache blocks. We conclude that (2) is satisfied.  

The number of sets for L1 cache is SL1 = 512 
and for both L2 and L3 caches it is SL2 = SL3 = 1024, 
according to (1). 

To simplify the notation in the following 
analysis, we use M as total number of blocks in the 
cache, S to express the number of sets in a set 
associative cache, n the associativity, and finally, a 
notation depending on the corresponding level in 
the form of an index. 

Definition 1 (Cache placement mappings). Let x 
be the memory block that contains the location of a 
data element requested by the algorithm. It is 
mapped onto: 
• a cache memory block with location x mod M 

in a direct mapped cache; 
• a set with identification x mod S in a set-

associative cache, and inside the set in one of 
n ossible blocks determined by an appropriate 
block replacement strategy; and 

• an empty block or a block chosen by an 
appropriate replacement strategy in a fully 
associative cache. 

A cache replacement policy chooses the Least 
Recently Used (LRU) block to be replaced, or 
chooses First In First Out (FIFO), random or similar 
strategy to change the block within a given set.  

Direct mapped caches are special cases where 
the associativity is n = 1 and the number of sets is 
equal to the total number of blocks S = M. A fully 
associative cache is a special case where the number 
of sets is S = 1 and associativity is n = M. In this 
context we will continue to analyze only set associ-
ative caches. 

Due to smaller capacity and cache associ-
ativity, there are cache misses when the processor 
tries to access data element which is not found in 
the memory. Cache compulsory misses appear as a 
result of the cold start, when the cache is empty and 
data elements are not loaded. Cache capacity 
misses appear since the cache cannot store all 
required data elements, and conflict misses appear 
if the mapping function is such that requested data 
elements are mapped in a smaller subset of blocks 
than the available. 

The next analysis gives an overview of 
activities performed by the processor in a multi-
level cache organization. Let us analyze what hap-
pens when a processor would like to access a data 
element within a block location x in memory. First, 
the processor identifies where it is mapped in the 
L1 cache level. Identification is done via mapping 
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by modulo function of SL1. Then it is searched in 
the identified set and if not found in nL1 available 
positions, a cache miss is generated. The same 
procedure continues on the L2 cache level and then 
on the L3 cache level. 

Suppose that the block is found on L2 cache 
level. Let us describe the activities that start after 
cache hit on a higher level and miss on analyzed 
cache level. A cache replacement policy decides 
which block will be replaced and the corresponding 
block is placed in the identified cache block. The 
activities are recognized as penalty, since more clock 
cycles will be used to replace the block and use the 
requested data element from identified cache block. 

 
STORAGE PATTERNS 

 
Main memory is a sequentially ordered list of 

data elements, and elements are accessed via their 
address. However, a cache memory does not use 
sequential ordering, as explained earlier, there are 
different cache organizations.  

The problems analyzed in this paper concern 
mapping of elements from a linearly ordered list to 
a specific cache storing organization. During this 
mapping, a serious number of cache misses might 
appear and result in performance drops. 

The side effects of using set associative 
caches is that an algorithm might require a series of 
data elements, which map onto a same cache set, 
and due to the cache placement, the mapping and 
replacement policy might be an operation that 
prevents using the cache benefits. On contrary it 
generates conflict misses and huge performance 
drops. In this paper we analyze these mappings 
determined by the cache organization and give 
conclusions on how to reorganize data elements 
and obtain more efficient algorithms. 

We do not tackle cache architecture addres-
sing modes, calculation of index, tag and other 
cache specific organization features that determine 
the architecture and organization of caches, but 
rather analyze how algorithms can efficiently use 
cache hierarchy.  

Most of the analysis in cache design are per-
formed on average behavior of benchmark programs. 
Various attempts have been made to reduce the cache 
misses and suggest an organization that will have 
overall best performance, including reducing miss 
rates with different associativity, victim caches, and 
compiler optimization, than reducing miss penalties 
with faster DRAM memories and writ buffers and 
reducing hit times [1]. Compiler optimizations include 
loop fusion, loop interchange or techniques to merge 
arrays. Various conclusions are brought, like lower 

associativity reduces the hit time, which is of high 
concern for L1 cache and miss penalty is critical for 
L2 caches, since it is larger. 

In this paper we analyze the algorithms and 
suggest their reorganization to avoid conflict cache 
misses as much as possible. We assume that the 
algorithms will use the benefit of a cache block 
(line) prefetching and when a data element is 
accessed then the algorithm is supposed to use all 
data elements from the cache block. Therefore in 
the next analysis we refer to cache blocks rather 
than to data element access. Denote a series of 
memory accesses produced by an algorithm as an 
array by Definition 2. 

Definition 2 (Request Block Array (RBA)). RBA 
is an array of memory block locations, denoted by 
x0, x1, x2, …, where each element of this array x is 
equal to a cache block location for a block that 
contains data elements sequentially requested by 
the algorithm instructions. 

Let us start defining properties of RBA of 
blocks, as presented in Definition 3. We assume 
that there is a uniform pattern (equidistance) be-
tween two consecutive elements in the RBA. 

Definition 3 (Block location offset). Let there be 
an algorithm that generates a RBA of K block loca-
tions, denoted by x0, x1, x2, …, xK-1. Block location 
offset f is obtained as a difference of block loca-
tions requested in consequent instructions 

 
f = xi+1 – xi, where i < K. 

 
Example 2 gives an overview of an existing 

algorithm and a RBA. 

Example 2 (Matrix multiplication algorithm). To 
simplify the algorithm presentation we suppose that 
matrices have dimension N·N, i.e. N is the matrix 
size, and the native version of the matrix 
multiplication algorithm is 
 

CN·N = AN·N · BN·N 
 

Suppose that all the data elements are double 
precision and each occupies 8 bytes. This means 
that the input matrices A = [aij],i,j = 0, … , N – 1 and 
B = [bij],i,j = 0, … , N – 1, and also the result matrix 
C = [cij],i,j = 0, … , N – 1 consist of data elements, 
which are stored sequentially in the main memory.  

The algorithm contains the following compu-
tations 

 

kj

N

k
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At the beginning, the algorithm specifies 
instructions that request a sequence of memory 
column elements b0j,b1j,b2j,…,. Due to sequential 
ordering in the main memory if the matrix size is   
N > 8 and the cache block size is 8 data elements, 
then each data element of this array is stored in a 
different cache block. In this case, RBA presents an 
array of N different cache blocks, for each iteration 
that uses a certain matrix column. 

Each column element will be found in a block 
located on memory address MA(bij) = MA(b00) + i · N 
+ j. The corresponding block is determined by the 
following block location x(bij) = MA(bij) DIV 8 since 
there are 8 data elements in a cache block. 

The algorithm starts with i = 0 and j = 0, and 
then sequentially requests the elements of the first 
matrix column, i.e. the elements b00,b10,b20, …,.The 
first data element to be requested by the processor 
is found in block x0 = x(b00) = x. Assuming that N = 
512 the next data element to be requested is found 
in block with location x1 = x(b10) = MA(b10) DIV 8 = 
x + 64. Therefore, for N = 512 the corresponding 
RBA of blocks x0, x1, x2, …, is equal to 

 
x, x + 64, x + 128, x + 192, …                    (3)  

 
It follows that the block location offset is       

f = 64. 
The next two lemmas can be proven by the 

Dirichlet’s box principle (or Pigeonhole principle), 
which states that if there are more balls to be put 
than the number of available boxes, then at least 
one box must contain more than one ball. It is a 
simple counting argument, and can have several 
other versions, such as the one which states that it 
is not possible to place more than K balls in K 
different places, or there does not exist an injective 
function on finite sets whose codomain is smaller 
than its domain. 

Lemma 1 gives a constraint about the capacity 
cache misses since caches are small memories. 

Lemma 1. A capacity cache miss appears if the 
number of RBA blocks K is higher than the number 
of available cache blocks MLi, i.e., K > MLi. 

Lemma 2 follows an analysis that shows how 
RBA will be mapped in the cache memory. The worst 
scenario is when set associative caches may map all 
RBA blocks onto a single set and direct mapped 
caches onto a single block location in the cache. 

Lemma 2. A conflict cache miss appears if at least 
n RBA blocks are mapped onto a single set of a 
cache memory with associativity value of n. 

So, if the associativity is n, then at most n 
blocks can be placed in one cache set. The cache 

conflict appears if the algorithm maps more than n 
RBA blocks onto a cache set. 

In case of direct mapped caches, a conflict 
cache miss appears if two RBA blocks map onto a 
same cache block. In case of set-associative caches, 
a conflict miss may not appear, since there is one 
set and the problems might appear only as capacity 
misses, where the number of used blocks is higher 
than the available blocks. 

The next analysis presents conditions for 
appearance of conflict misses. Let us analyze two 
blocks xk and xl of the RBA. According to Definition 
1, a block is mapped onto a cache set on level Li 
identified with modulo function, and denote mapped 
values by y(xk) = xk MOD SLi and y(xl) = xl MOD SLi. 
We would like to express the condition that maps 
these two blocks xk and xl of the RBA onto one set in a 
set associative cache, i.e. y(xk) = y(xl). It follows that 
xk ≡ xl mod SLi. This proves Lemma 3. 

Lemma 3. A conflict cache miss appears in a cache 
level Li if there are at least n blocks in RBA which 
have the same value of modulo function mod SLi.  

As a consequence of Lemma 3 we are 
interested in analyzing where the blocks of RBA 
will be mapped according to modulo functions of 
the block locations. Definition 4 defines an array 
obtained by mapping the RBA. 

Definition 4 (Mapped Block Array (MBA)). MBA 
is an array of K cache block locations y0, y1, y2, …, yK-

1, where each block yi is obtained as a mapped block 
location from a RBA block xi, mapped by a 
corresponding mapping function used in the 
appropriate cache level.  

Arrays MBA and RBA have the same 
number of elements K. Values of RBA are in the 
range from 0 to the number of blocks in the 
memory Mmen i.e., 0 ≤ xi ≤ Mmen for 0 ≤ i < K. Values 
of MBA are in the range from 0 to the number of 
sets in the set associative cache S, that is 0 ≤ yi < S 
for 0 ≤ i < K.  

The whole associativity problem can now 
have a different formulation by analyzing the 
properties of RBA and MBA. Definition 5 presents 
some properties of MBA.  

Definition 5 (Set of MBA destinations). Let there 
be a MBA obtained by applying modulo functions r 
of corresponding RBA blocks for a set associative 
cache with S sets. The set of MBA destinations R is 
the set of d different elements of MBA, such that 

 
R = {ri, 0 ≤ i < d}  where  
 

0 ≤ ri < S, and ri ≠ rj   for  0 ≤ i,j < d, i ≠ j.  
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By analyzing the properties of MBA we can 
conclude that there are two extremes while map-
ping the blocks. The first extreme is found by a 
uniform distribution of elements, i.e. cache blocks 
are uniformly mapped in all cache sets. In this case 
there is no associativity problem and only cache 
capacity problem may appear.  

In reality, modulo functions map cache blocks 
in a smaller number of sets than the available number 
of sets. A simple conclusion follows that the problems 
will start if d < S, i.e. when smaller number of cache 
blocks are used than the number of available blocks. 
The second analyzed extreme where highest associ-
ativity problems will appear is when d = 1, since only 
one set will be used instead of whole cache. 

However, conflict misses do not appear in all 
cases when MBA blocks are distributed in smaller 
number of sets. The associativity value, shows that 
there are n blocks available in each set, so we also 
have to analyze this capacity by analyzing the 
problem "how many blocks will map in a particular 
set". If this number is greater than the associativity 
value, than the conflict cache misses will start to 
generate. 
 

ANALYSIS OF CONFLICT MISSES 
 

The following analysis shows that the 
distribution pattern of requested data elements is 
mostly generated by nested loops which represent 
recursions and iterations. It means that most of 
these cases actually use FOR NEXT (or WHILE 
DO, or REPEAT UNTIL) loops, which imply 
regular pattern in the algorithms, that usually refer 
to sequentially ordered blocks. Each algorithm 
request defines a certain offset f in this sequentially 
ordered list, so the mapping modulo function can 
be rather easily calculated. 

Assume that the first instruction requests a data 
element from a block with location x. It is mapped 
onto a set identified with y = x MOD S. The next 
request according to the algorithm is for a block found 
on offset f, meaning that the next requested block is 
located on x + f and the mapped set is (x + f) MOD S. 
A conflict might appear in cases when they map onto 
a same set, i.e. if f ≡ 0 MOD S.  

There might be a case when a multiple number 
of f is equal to the number of sets S. In more general 
case there is a positive integer number that determines 
multiple factor of f that equals the number of sets. The 
following analysis presents the value of this integer. 

Theorem 1. If an algorithm specifies an offset of f 
blocks in the RBA of blocks such that 
 

d · f = S                                             (4) 
 

then there are exactly d different positions where 
the RBA blocks will be mapped, i.e. the number of 
different elements in MBA is d. 
Proof. Proof can be constructed using the 
properties of the modulo functions. Let the RBA be 
 

x, x + f, x + 2 · f, … 
 
We can construct MBA with elements 
 

x MOD S, (x + f) MOD S, (x + 2f) MOD S, … 
 
Since d · f = S, it follows that (x + d ·f) MOD S = x 
MOD S, and the following array elements start again 
to follow the same pattern. We can identify that the 
different values of reminders is d. 
 

If d = 1 then f = S and there is exactly one set 
where the blocks will be mapped and conflict cache 
misses will start to appear after n iterations of the 
algorithm. 

If d > 1 then f · d = S and the conflict cache 
misses will start to appear after d · n iterations of 
the algorithm. The following analysis gives the 
necessary condition for appearance of conflict 
cache misses. 
Theorem 2. Conflict cache misses will appear if 
the associativity is smaller than the number of 
blocks mapped onto a given set in a set-associative 
cache memory, if there are d diffe-rent sets where 
the blocks will be mapped, i.e. 
 

d
Kn <                                                          (5) 

Proof 2. According to Definition 3 the number of 
RBA blocks is K . Therefore, at least 







d
K  blocks 

will be mapped onto one set. Relation (5) is derived 
according to Dirichlet box principle that there are 
at most n positions, where these blocks will be 
placed. 

Note that we have analyzed this phenomenon 
from a different aspect in [8] and derived the same 
result from a very different perspective. The 
following example illustrates the RBA of blocks 
and results obtained in theorems 1 and 2. 
Example 3 (Conflict cache misses for MMA with 
N = 512). Analyze the MMA algorithm as presented 
in Example 2 for N = 512 and its execution on the 
AMD Opteron processor described in Example 1. 
There are 8 data elements in each cache block, and 
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SLi = 512. We also suppose that the first matrix 
column element is found in a block with location x.  

The processor tries to identify each 
requested block in the L1 cache and maps it onto a 
specific set, determined by the mapping function 
expressed in Definition 1. Each block will be 
mapped to a set location 

y(bij) = x(bij) MOD SL1 = (MA(bij)DIV 8) MOD SL1 

in the L1 cache. 
The RBA of blocks, as presented in (3), will 

be mapped onto L1 cache set locations and form a 
MBA y0, y1, y2, …, equal to y(b00), y(b10), y(b20), …   

We can also calculate that y(bi0)=(x+64 · i) 
MOD 512. As an illustration, if x ≡ 0 MOD 512, 
then the MBA will be 

0, 64, 128, 192, 256, 320, 384, 448, 0, 64, 128, … 

According to Definition 3, it follows that f = 
x(b(i + 1)0) · x(b(i0) = 64. 

We can calculate from Theorem 1 that d = 8 
satisfies (4) and it follows that the blocks will be 
mapped in exactly 8 sets. According to Definition 3, 
there are N = 512 iterations and N = K = 512 
blocks in RBA for each iteration. Theorem 2 shows 
that there are 64=

d
N  blocks to be placed onto one 

set. Since the associativity of L1 cache is nL1 = 2 
there will be at least 64 – 2 = 62 conflict misses for 
each iteration accessing a column matrix, reaching 
62/64 = 96.87% conflict misses. 

The number of sets for both L2 and L3 
caches is 1024, and it follows that 16==

f
sd .  

The number of blocks to be placed onto one set is 

32
16
512 ==

d
K  The associativity for L2 is nL2 = 8 and 

for L3 is nL3 = 32. It means that conflict misses will 
appear for L2 and for L3 cache it will reach the 
boundary condition. There will be 32 – 8 = 24 
conflict misses for L2 out of 32 accesses, reaching 
24/32 = 75% conflict misses. Since the matrix A 
will occupy some blocks that are to be scheduled 
within previous analysis for matrix B column, it 
means that there will be at least some conflict 
misses in the L3 cache although 32 blocks are to be 
scheduled in 32 available places. 

The previous analysis assumed that multiple 
number of f equals to S, or when f is divisor of S. 
However, a more general case will be when f and S 
have a common divisor, or f > S. The following 
analysis presents this case. 

Theorem 3 If an algorithm specifies an offset of f 
blocks in the RBA of blocks such that the greatest 

common divisor of f and S is a positive integer        
g = GCD(f, S) > 1, then 

,·· Skfd =  where 
g
sd =  and 

g
fk =         (6) 

There are exactly d different sets in MBA (where 
the RBA blocks will be mapped). 

Proof. Let us analyze the RBA of blocks 
 

x,x + f,x + 2 · f, … 
 
and construct MBA with the elements 
 

x MOD S, (x + f) MOD S,(x + 2 · f) MOD S, … 
 
Since d · f = k · S, it follows that 
 

(x + d · f) MOD S = x MOD S                    (7) 
 
and the following array elements start again to follow 
the same pattern. Due to the definition of d as the 
smallest number such that (7) holds and the number 
of different reminders modulo S is exactly d. 

Since Theorem 3 proves that the number of 
different sets is d, we can also confirm the eligibility 
of Theorem 2. The following example presents the 
analyzed more general case. 

Example 4 (Conflict cache misses for MMA with 
N = 768). We assume that the MMA algorithm 
presented in Example 2 is executed on the AMD 
Opteron processor described in Example 1 for N = 
768. There are K = N = 768 iterations and K = N 
= 768 elements of RBA for each iteration. In this 
case the block address offset is f = x(b(i + 1)0) – x(bi0)  
= 96  Theorem 3 can be applied, since f is not a 
divisor of S. 

The corresponding RBA of blocks x(b00), 
x(b10), x(b20), … is equal to 

 
x, x + 96, x + 192, x + 288, x + 384, … 

 
As an illustration, if x ≡ 0 MOD 512, then 

MBA  y(b00), y(b10), y(b20), … is 
 

0, 96, 192, 288, 384, 480, 576, 768, 864, 960, 1056, 
1152, 1248, 1344, 1440, 0, 96, … 

 
Let us analyze properties of MBA. According 

to Theorem 3, g = GCD(f, S) = 32. Then we 
calculate d = 16, and it satisfies (6). It follows that 
the blocks will be mapped in exactly 16 sets. 
According to Definition 3 there are N = 768 
iterations and blocks in both RBA and MBA for 
each iteration. Theorem 2 shows that there are 
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48=
d
K  blocks to be placed onto one set. Since the 

associativity is nL1 = 2 the number of conflict misses 
is 46 out of 48 accesses, reaching 46/48 = 95.83% 
cache misses. 

 

The number of sets for both L2 and L3 is 1024, 

it follows that 32==
g
sd . The number of blocks to 

be placed onto one set is .24
32
768 ==

d
K  The 

associativity for L2 is nL2 = 8 and for L3 is nL3 = 32, 
which means that conflict misses will appear for L2, 
but not for L3 cache. There will be 24 – 8 = 16 
conflict misses for L2 out of 24 accesses, reaching 
66.67% conflict misses. 

 
RESULTS AND DISCUSSION 

 
In this section we conduct experiments to 

prove the theoretical analysis explained in previous 
section and explain the conflict cache misses. The 
experiments are conducted using the Opteron 
processor [10], whose characteristics are explained 
in Example 1. The testing algorithm is matrix 
multiplication, as presented in Example 2. 

The diagrams on figures 2, 3 and 4 present 
the area around these points, (five points –40, –32, 
–24, –16 and –8 bellow the expected negative 
impulses and five points +8, +16, +24, +32 and +40 
above the matrix size where performance drop is 
expected). The x-axis presents the matrix size N in 
each figure in this section and the y-axis depicts the 
measured speed in MFLOPS. 

 
 

  
Figure 2: Speeds in the area around N = 256 

 
 

Firstly, we shall illustrate the case where the 
capacity misses appear, as discussed in Lemma 1. 
In Example 1 we have presented that L2 cache has 
associativity nL2 = 8, and the number of sets is SL2 = 
1024, meaning that the number of cache blocks is 
ML2 = 8192. The cache block size fits 8 data 

elements and there is possibility to store a total of 
65536 data elements. 

Suppose that there is uniform distribution of 
data elements of one matrix in all sets in the L2 
cache. It means that N · N data elements will fit in 
the available number until the capacity problems 
appear. In this case, we calculate that N = 256. If   
N > 256, then the capacity misses will start to raise, 
as presented in Figure 2. This is why the measured 
speed has decreasing trend for N > 256, while for < 
256 it has almost horizontal stable value. Note that the 
capacity misses will start earlier (for smaller N), since 
the algorithm needs two matrices to be stored in the 
cache, but the nature of the algorithm is to use a row 
of matrix A and the whole matrix of B to fulfill each 
iteration column by column. However, expressive 
cache capacity misses will appear for specified N, 
since the column matrix elements will initiate conflict 
misses with some of the elements of A. 

The peak in N = 256 appears due to 
associativity problems. We calculate that each 
column data element, as requested by the algo-
rithm, is on memory address offset N = K = 256 

and 32
8

== Nf , since there are 8 data elements in 

each cache block. Analyzing L1 cache with SL1 = 
512 sets we obtain d = 16, according to Theorem 1. 
The number of sets in L2 and L3 is 1024 and we 
obtain that d = 32 in these cases. 

The existence of associativity misses is 
shown by Theorem 2. The values for associativity 
are nL1 = 2, nL2 = 8 and nL3 = 32. Since N = K = 256 

per each iteration, we calculate that 16
16
256 ==

d
K  

for L1 cache, and 8
32
256 ==

d
K  for L2 and L3 

caches. It appears that the conditions in Theorem 2 
are satisfied for L1 and L2 caches, but not for L3 
cache, i.e. associativity problems appear only in L1 
and L2 caches.  

The number of conflict misses in L1 cache is  

142161 =−=− Ln
d
K , meaning that 14 cache 

misses will appear in 16 accesses, i.e. 14/16 = 
87.5%  of data accesses will be conflict misses. The 
analysis for L2 shows that 8 blocks have to be 
placed in 8 available places. In the previous 
analysis we assumed only the distribution of the B 
matrix. However, matrix elements of A occupy at 
least one set and conflict misses appear even 
earlier. Additionally, L1 cache misses initiate addi-
tional cache misses in the L2 cache. 
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We continue to present details of those 
matrix sizes analyzed in Examples 3 and 4, 
correspondingly for N = 512  and N = 768.   

The results for Example 3 present the area of 
N = 512 and Figure 3 depicts the achieved speed. 
Performance drop for N = 512 is evident in 
comparison to the neighboring points. The speed 
has a negative trend, as shown for the previous 
analysis of N = 512 due to increased capacity misses.  

 

  
Figure 3: Speeds in the area around N =  512  

 
 

Figure 4 depicts the achieved speed in the area 
of N = 768, theoretically analyzed in Example 4.  
 

  
Figure 4: Speeds in the area around N = 768  

 
 

Similarly to the previous case, the theoretical 
analysis is proved and the speed has decreased in 
the analyzed point. 
 

CONCLUSIONS 
 

In this paper we present an analysis of 
associativity and conflict misses in set associative 
caches. The analysis is performed by analyzing 
storage patterns and mapping functions used in 
caches to store blocks. 

We define RBA, as an array of blocks that is 
generated by accesses defined in the algorithm. 
This array is mapped via modulo functions onto 
MBA, as array of block locations in the cache. This 
mapping is dependent on cache hardware charac-
teristics and therefore we analyze relations among 
data arrays used in algorithms and hardware cache 
parameters.  

Analysis of properties of the MBA using 
congruences and modulo functions shows that 
specific problems with RBA with K blocks and 
algorithm property of address offset f can correlate 
with the number of sets S in the set associative 
cache. The relation shown in Theorem 1 explicitly 
determines the number of used blocks in the set 
associative cache instead of using all available 
blocks. This phenomenon generates conflict misses 
and initiates performance degradation if conditions 
defined in Theorem 2 are fulfilled. This is illustrated 
by an example, that covers a case study for N = 512 
and later on by experimental proof. 

Theorem 1 covers only cases when the 
matrix size is a divisor of the number of sets in set 
associative cache. However, we also analyzed cases 
when the matrix size and number of sets might 
have a common divisor. Theorem 3 covers this 
case, as a general approach of the associativity 
problem. Therefore, we illustrate a theoretical ex-
planation in the example with case study for N = 768 
corresponding experimental proof. 

These results can be used in specifying algo-
rithms, by providing a careful analysis of associa-
tivity and conflict cache misses for a given data 
array size and storage pattern used in a repetitive 
algorithm. If the analysis shows that the associativity 
will initiate conflict misses, we can increase the data 
array or change the algorithm pattern to avoid conflict 
misses, and yet effectively use the cache exploiting 
time and data locality properties. 
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Кеш-меморијата игра голема улога во определувањето на перформансите при решавање на научни 
проблеми. Многу од овие проблеми вклучуваат голем број на повторувања на сложени или едноставни 
пресметки врз различни податочни елементи складирани како низи во секвенцијален редослед во меморијата. 
При извршување на алгоритмите, овие елементи се преземаат во кеш-меморијата и тогаш се користат од 
процесорот. Овој процес вообичаено е проследен со промашувања во кеш-меморијата поради конфликти или 
капацитет, а перформансите се намалени од функцијата за сместување во кеш-меморијата, политиката на 
замена во кеш-меморијата или од ограничувањето на капацитетот. 

Во овој труд го анализираме влијанието на алгоритмите и перформансите од сет-асоцијативната кеш-
меморија кога е референцирана голема низа во секвенцијално подредената меморија. Пресликан е проблемот 
на користењето на кеш-меморијата во математички модел базиран на ИТ за да се анализираат перформансите 
и да се даде научно објаснување за падовите на перформансите поради промашувањата во кеш-меморијата 
предизвикани од асоцијативноста и конфликтот. 

 
Клучни зборови: Пресметување со високи перформанси; пад на перформанси; мулти-процесор со 

споделена меморија; супер-линеарно забрзување  
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