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We consider (4,2)-chain homotopy for (4,2)-chain maps between (4,2)-chain complexes (weak or strong), and
prove that if f and g are (4,2)-chain homotopic, then they induce the same homomorphisms on the (4,2)-homology

groups for the correspondent (4,2)-chain complexes.
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INTRODUCTION

The notions of (4,2)-chain complexes and
(4,2)-chain homology groups were introduced and
examined in [5]. In this paper we consider a notion
of a (4,2)-chain homotopy, analogouos to the usual
notion of a chain homotopy for chain complexes.
Although the introduced notion of a (4,2)-chain
homotopy, in general, does not behave in the same
way as the usual chain homotopy (for example, the
relation among (4,2)-chain maps defined by (4,2)-
chain homotopies is not an equivalence), it produces
the same results on the (4,2)-homology groups.

For the usual notions about chain complexes
of Abelian groups, chain homotopy and homology
groups we refer to [4]. We recall the basic notions
and properties about (4,2)-groups and (4,2)-chain
complexes from [1], [2], [3] and [5].

1° A (4,2)-semigroup is a pair (G,[ ]), where
G is a nonempty set and [ ]: G* » G? is a (4,2)-
operation, such that for any x,y,z,t,u,v € G,

[[xyztJuv] = [X[yztu]v] = [xy[ztuv]],

i.e. []is (4,2)-associative.

Since the (4,2)-operation is associative, we
use the notation [xyztuv] for [[xyzt]uv].

For (4,2)-semigroups (G,[ 1), (G’,[ 1), a
(4,2)-homomorphism is a map f: G — G’ such that

[FOQf(Y)F(2)F(1)] = (F(u).f(v)), where (u,v) = [xyzt]
for any x,y,z,teG.

Any (4,2)-semigroup (G,[ ]) induces a semi-
group (G?,.), where “o” is the binary operation
on G? defined by:

(x,y) © (u,vV)=[xyuv],
for any (x,y),(u,v)eG>.

We say that a (4,2)-semigroup (G,[ ]) is a
commutative (4,2)-group if (G%0) is a commuta-
tive group.

2° Let (G,[ ]), be a commutative (4,2)-group.
Then there is 0eG and for each xeG, there is a
unique element —xeG, such that for any x,y,z,te G:

(a) [xyzt] = [zyxt] = [xtzy] = [ztxy];
(b) if [xyzt] = (u,v), then [yxzt] = (v,u);
(c) [00xy] = (x,y) and [xx(-x)(-x)] = (0,0);
(d) if [xxyy] = (u,v), then u = v;
(@) if [X(=X)y(-y)] = (u,v), then v =-u;
(f) the neutral element in (G2,0) is (0,0); and
(9) the inverse element for (x,y)e (G?,0) is the ele-
ment (x,y) " = [yX(=)()()(Y)]
3° A subset H of G, for a given commutative
(4,2)-group (G,[ 1), is a (4,2)-subgroup, if u,veH,
for any x,y,z,teH with [xyzt] = (u,v).
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For a (4,2)-subgroup (H,[ ]) of a commuta-
tive (4,2)-group (G,[ 1), in general, there is no way
of defining a (4,2)-factor group, but for normal
(4,2)-subgoups (4,2)-factor groups are defined.

4° A (4,2)-subgroup (H,[ ]) a of a commu-
tative (4,2)-group (G,[]) is said to be normal, if

[xxeH?T = [yay=H’] = [xxH] = [yyiH?],
for any X;,X,,y1,¥.€G, and j=1,2, where
[xyH?] = { [xyuv] |u,veH }.

If (H[ 1) is a normal (4,2)-subgroup of a
commutative (4,2)-group (G,[ 1), the (4,2)-factor
group (G/H,[ ]) is defined by: G/H = { x™ | xeG},
where ~ is the equivalence relation on G defined by

X~y < [xxH?1=[yyH?] i.e. x—yeH,
and [X'y zt] = (u,v) for [xyzt] = (u,v).

5° The commutative (4,2)-groups and (4,2)-
homomorphisms, form the category (4,2)-Ab.

Three functors, denoted by ®,, @, and ®-
from the category (4,2)-Ab to the category Ab of
commutative groups are defined as follows.

For a commutative (4,2)-group G = (G,[ ]):
(1) @,(G) is the group (G2, o), defined in 1°%

(2) D(G) = (G,+), where x+y =u if and only if
[xxyy] = (u,u); and

(3) ®«(G) = (G,+), where x «y = u if and only if
X(=X)y(=y)] = (u,-u).

If :G —> G’ is a (4,2)-homomorphism, then,
D.(F) = D«(f ) = fand O,(f ):G* — (G*)* is defined
by @(f )(x,y) = (f(x).f(y))-

6° By analogy with the notion of a chain
complex of Abelian groups, two types of (4,2)-
chain complexes of commutative (4,2)-groups,
introduced in [5], are defined as follows.

A weak (4,2)-chain complex, denoted by
w(K,0) , is a sequence
e (K [ 2K [ D (K [ <
of commutative (4,2)-groups (K,,[]). and (4,2)-
homomorphisms & : (K, ,[1)— (K, ,[]), such
that for every integer n, 9, 0., =0, 1€ 9,0,,, IS
the zero homomorphism.

7° If w(K,0) is a weak (4,2)-chain complex,
then B, = Imo,; and Z, = kero, are (4,2)-
subgroups of K,, and B, is a (4,2)-subgroup of Z,,
for every integer n. In general, B, is not a normal
(4,2)-subgroup of Z...

8° A strong (4,2)-chain complex, denoted by
s(K,0), is a weak (4,2)-chain complex with the
additional requirement that B, is a normal (4,2)-
subgroup of Z,, for every integer n.

9° If w(K,0) and w(K’,0’) are weak (4,2)-
chain complexes, then a (4,2)-chain map f from

w(K,0) to w(K’,0”) is a sequence of (4,2)-homo-
morphisms

o (K,.[1) = (K,,[1), n—integer
such that 8'“ fo=f,10,,ie. for every integer n,
the following diagram commutes
(Ko, [D22—(K,..[ 1)
Lt It

(K [ D)KL D).

10° The weak (4,2)-chain complexes and
(4,2)-homomorphisms, form a category, denoted by
(4,2)-woK, whose subcategory is (4,2)-soK of the
strong (4,2)-chain complexes and (4,2)-homomor-
phisms.

11° Three functors, denoted by F,, F, and F-
from the category (4,2)-woK to the category oK of
chain complexes of Abelian groups are defined as
follows.

For a weak (4,2)-chain complex w(K,0):

(1) Fa(w(K,0)) is the sequence of the groups @,(K,)
with the boundary operators ®,(d,);

(2) Fi(w(K,0)) is the sequence of the groups ®.(K,)
with the boundary operators @.(d,); and

(3) F«(w(K,0)) is the sequence of the groups ®«(K,)
with the boundary operators ®«(d,).

For a (4,2)-chain map f : w(K,0) - w(K’,0"):
(1) Fy(f) is the sequence of the homomorphisms
DyF n): Do(Kp) = Do(Ky);

(2) F.(f) is the sequence of the homomorphisms
O.(f): D(K) > P(Ky); and

(3) F«(f) is the sequence of the homomorphisms
(D*(f n): q)*(Kn) - (D*(Kn,)-

12° For any integer n, let H,: 6K—Ab be the
functor such that for a chain complex K=(K,d),
H,(K) is the n-th homology group of K, and for a
chain map f: K —» K’, Hy(f) : Hy(K) — Hn(K’) is
the induced homormphism.

13° For any integer n, by composing the
functors F,, F. and F- with the functor H,, three
functors from (4,2)-woK to the category Ab are
defined as follows.

Let K=w(K,0), K’=w(K’,0’) be two weak
(4,2)-chain complexes and let f : K — K’ be a chain
map. Then:

(1) Hn2(K) = Hn(F2(K)) and Hyo(f) = Ha(F());
(2) Hy+(K) = Hy(F+(K)) and H,,.(f) = Hy(F.(f)); and
(3) Hnx(K) = Hy(F+(K)) and Hy«(f) = Hn(F«(f)).

Since a strong (4,2)-chain complex K=s(K,0)
is also a weak (4,2)-chain complex, the above
homology groups Hn, (K), Hn+(K) and H,«(K) are
defined. Since for a strong (4,2)-chain complex
K=s(K,0), B, = Im&y.1 is a normal (4,2)-subgoup of
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Z, = kerc,, we have the (4,2)-factor group Z,/Bi.
14° For any integer n, the functor (4,2)-H, from

the category (4,2)-soK to the category (4,2)-Ab is
defened as follows. For any strong (4,2)-chain
complexes K=s(K,0), (4,2)-H,(K) is the (4,2)-factor
group Z,/B,. It is shown in [5], that for a (4,2)-
chain map f : K — K’, where K and K’ are strong
(4,2)-chain complexes, the map (4,2)-H,(f) defined
by (4,2)-H,(f)(x") = (f(x))", for xekero, is a (4,2)-
homomorphism from (4,2)-Hy(K) to (4,2)-Hn(K”).

15° By composing the functors @,, @, and ®-
from the category (4,2)-Ab to the category Ab, with
the functor (4,2)-H,, three functors, ®,c (4,2)-H,,
®,0(4,2)-H,, and ®-o (4,2)-H,, from the category
(4,2)-s0K to the category Ab are obtained.

Using the fact that (4,2)-soK is a subcategory
of (4,2)-woK, it is shown in [5], that: @, 0 (4,2)-H,

is the restriction of H,, on (4,2)-s0K; @, (4,2)-H,
is the restriction of H,. on (4,2)-s0K; and that
®.0 (4,2)-H, is the restriction of H, ~ on (4,2)-soK.

(4,2)-CHAIN HOMOTOPY

Let K=w(K,0) and K’=w(K’,0”) be two weak
(4,2)-chain complexes, and let f,g : K — K’ be two
(4,2)-chain maps.

Let s be a sequence of (4,2)-homomorphisms:
Sn: (Ko [1) = (Knew, [1)

The sequence s induces a sequence ®,(s) of
homomorhisms

(@2(8))n = Dalsn): ((Ko)?, ©) = (K'na)?, o).

Definition 1. Let K, K’, f, g and s be as
above. The sequence s is said to be a (4,2)-chain
homotopy from f to g, denoted by s: f a g, if for
every integer nand any X,yeK.:

(A) [6’n+1(5n(X)) a’n+l(sn(y)) Snfl(an(x)) Snfl(an(y)) gn(X) gn(y)] = (f n(X)’ fn(y))
Using the operation o from ((K’,)% o), the condition (A) can be written in the form
(B) D0 1) (D2(Sn) (X,Y)) © Do 1)(P2(n)(X,Y)) = D(F )(XY) © (D2(Gr)(XY)) * .

For every (4,2)-chain map, if for every
integer n, we take s, to be the zero (4,2)-homo-
morphism, i.e. s,(X)=0, for every x, then, directly
from the definition, it follows that s is a (4,2)-chain
homotopy from f to f. Hence, the relation o is a
reflexive relation.

In general, the relation o is not symmetric, i.e.
the existence of a (4,2)-chain homotopy from f to g,
does not imply the existence of a (4,2)-chain homo-
topy from g to f. Also, in general, the relation o is not
transitive, i.e. the existence of (4,2)-chain homotopies
from f to g and from g to h, does not imply the
existence of (4,2)-chain homotopy from f to h.

Although the relation o is not an equivalence
relation, it satisfies several properties that will
allow us to extend it to an equivalence relation,
analogous to the equivalence relation of chain
homotopy in the category oK of chain complexes of
commutative groups.

Next, for (4,2)-chain homotopy s, let: Fx(s) be
the sequence defined by (Fx(s)), = @(sy); F+(S) be the
sequence defined by (F.(s)), = ®@.(Sn) = Sn; and F«(S)
be the sequence defined by (F«(S)),= ®@«(Sy)-

Proposition 1. Let f ,g: K—>K’ be (4,2)-chain
maps and let s be a (4,2)-chain homotopy from f
tog,i.e.s: fag. Then, in the category oK, where
the chain homotopy is an equivalence relation,
F,(s), F+(s) and F«(s) are chain homotopies, i.e.
Fa(s): Fa(f) ~ F2(9); Fu(s): T~g; and F«(s): f~g.

Proof. The condition (B) implies that F,(s) is
a chain homotopy from F,(f) to F,(g). Although, in
general, a (4,2)-chain homotopy from g to f, does
not exist, the sequence y,: (Ky)*—>(K’n1)? defined
by w(X,y)=(5x(X),Sx(y)) ", is a chain homotopy from
F,(g) to Fy(f). For the transitivity, let s’ be a (4,2)-
chain homotopy from g to h. Then the sequence
i (Kn)* (K ne1)” defined by

P(X,y) = (sn(X),5n(Y)) © (8°n(x),8°n(Y)),
is a chain homotopy from F,(f) to F»(h).

Next, we look at F.(s). By setting y=x in (A)
we obtain [uuvvg,(X)gn(X)] = (fa(x),fa(X)), where

U = 0’ n+1(Sn(X)) and v = S, 1(Gn(X)).
This implies that u + v + g,(X) = f(X), i.e.

O’ n1(Sn(X)) + Sn-1(On(X)) = Fa(X) — Gn(X).

Hence, s is a chain homotopy from f to g, i.e.
from F.(f) to F.(9).

The sequence —s, defined by (=8)(X) = sp(—X)
= —5,(x), is a chain homotopy from F.(g) to F.(f).

If s” is a (4,2)-chain homotopy from g to h,
the sequence s+s’ defined by (s+s)n(X)=Sn(x)+s’n(X)
is a chain homotopy from F.(f) to F.(h).

The discussion for F«(s) is similar to the
discussion for F.(s). Using the notation for u and v
as above, by setting y = —x in (A) we obtain
[uu’vv’gn(X))gn(=X)] = (fa(X),fa(-X)), where

U’ = 0’n41(Sn(—X)) and v’ = s, 1(On(—X)).

Since s, Oh, 0’ ne1 and gnare (4,2)-homomorphisms,
it follows that u” =0".1(Sn(—X)) = —0’n+1(Sn(X)) = U,
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Vv’ =5p1(0n(—X)) = —Sn-1(Gn(X)) = -V and g(-X) = —9(X),
abd s0, [u(-u)v(=v)gn(x))gn(-X)] = (Fa(X),fa(X)).
This implies that u « v « gn(X) = f1(x), i.e.

a’n+l(sn(x)) * Sp l(an(x)) = fn(X) * (_gn(x))-

Hence, s is a chain homotopy from f to g, i.e.
from F«(f) to F«(Q).

The sequence —s, defined by (—s)(X) = Sp(—X)
= —5,(X), is a chain homotopy from F«(g) to F«(f).

If s’ is a (4,2)-chain homotopy from g to h,
the sequence s«s’ defined by (s+58”)n(X)=Sn(X)+s’n(X)
is a chain homotopy from F«(f) to F«(h). [J

Corollary 1. Let f ,g: KK’ be (4,2)-chain
maps. A sequence s, of (4,2)-homomorphisms

Sn: (Ko [1) = (Kt [1)
is a (4,2)-chain homotopy fromftog,i.e.s:fag

if and only if the sequence F,(s) of homomorphisms
(F2(S))n = @4(sy) is a chain homotopy from F,(f) to
Fa(9), i.e. F(s): Fa(f) ~ Fa(Q) .

Proof. The proof, follows from Proposition 1
and the condition (B).

Proposition 2. Let K=w(K,0), K’=w(K”,0)
and K”=w(K”,0”) be weak (4,2)-chain complexes.

@If f,g:K—>K and h: K — K” are
(4,2)-chain maps, and fa g, then hf ahg.

b)If f:K—>Kand g,h:K — K”are
(4,2)-chain maps, and h a. g, then hf o ¢f .

Proof. (a) Let s be a (4,2)-chain homotopy
fromf to g, i.e.s: fa g. Using the fact that h, is a
(4,2)-homomorphism and applying it to (A), we
obtain that

[(hn@’n+18(X)) (Mn0’ n+15n(Y)) (NnSn - 15(X)) (S - 1(n(Y)) (hagn (X)) (N Gn(YDT = ((if (X)), (Nnf n(Y)))-
Next, using the fact that h is a (4,2)-chain map, i.e. that h, 0’ n+1 = 0 41 hne1, We Obtain that

[(a”n+l(hn+lsn(x)) (a”n+1(hn+15n(Y))(hnsn - 1(6n(x))(hn3n - 1(6n(y)) (hngn(x))(hngn(y))] = ((hnf n(X))v(hnf n(y)))

The last equality is the condition (A) for the
chain maps hf and hg and for the sequence hs of
(4,2)-homomorpisms defined by (hs), = hpiSn. All
this implies that hs: hf o hg .

(b) The proof is similar to the prof of (a). Let
s be a (4,2)-chain homotopy from g to h. Then the
sequence sf of (4,2)-homomorpisms defined by
(fs), = fusn is a (4,2)-chain homotopy from gf to hf,
i.e. fs: gf o hf.[]

We denote the symmetric and transititive
closure of the relation o (i.e. the smallest equiva-
lence relation containing o) by ~ . With this, the
relation ~ is an equivalence relation for the (4,2)-
chain maps in the category (4,2)-woK, and also in
the category (4,2)-soK.

Remark 1. The definition of ~ implies that
for two (4,2)-chain maps fand g, f~g if and only
if there are (4,2)-chain maps hy,hyhs, ... KW
such that for any je{1,2,3,...,m}, h; o hjx; or hj:; o
h;; f=hy;and g = hpa.

Definition 2. Two (4,2)-chain maps f and g
are said to be (4,2)-homotopic if f~g. A (4,2)-
chain map f : K — K’ is said to be a (4,2)-
homotopy equivalence if there is a (4,2)-chain
map g : K> — K such that gf ~1x and fg ~ 1
where 1x and 1y are the identity (4,2)-chain maps
for K and K’ respectively. Two weak (4,2)-chain
complexes K=w(K,0), K’=w(K’,0’) are said to be
(4,2)-homotopy equivalent, denoted by K ~ K’, if
there is a (4,2)-homotopy equivalence f : K > K’ .
Two strong (4,2)-chain complexes are said to be

(4,2)-homotopy equivalent, if they are (4,2)-ho-
motopy equivalent as weak (4,2)-chain complexes.

Proposition 3. Let K, K’, K” be (4,2)-chain
complexes, and let g,h: K— K’, g’,h”:K’—> K” be
(4,2)-chain maps, such that g ~ h and g’ ~ h’. Then,
the compositions gg’, hh’: K— K” are (4,2)-homo-
topic, i.e. gg’~ hh’.

Proof. Proposition 2 (a) and Remark 1 imply
that g’g ~ g’h, and Proposition 2 (b) and Remark 1
imply that g’h ~ h’h. Thus, gg’~ hh’. [J

For a (4,2)-chain map h, we denote the equi-
valence class h™ = {g | g ~ h}, by [h].

Proposition 3 implies the following:

Corollary 2. All w(K,0), the weak (4,2)-
chain complexes as objects and all [h], the (4,2)-ho-
motopy classes of (4,2)-chain maps, form a catego-
ry, denoted by (4,2)-hwoK. All strong (4,2)-chain
complexes and all (4,2)-homotopy classes of (4,2)-
chain maps, form a subcategory of (4,2)-hwokK,
denoted by (4,2)-hsoK.

Proposition 4. If h,g are two (4,2)-homo-topic
(4,2)-chain maps, i.e. h ~ g, then their images by the
functors F,, F. and F« in the category of chain
complexes oK are homotopic maps, i.e. Fo(h) ~ Fx(g),
F.(h) ~ F.(g) and F«(h) ~ F«(q).

Proof. The proof follows from Remark 1 and
Proposition 1. []

Proposition 4 implies the following:

Corollary 3. The functors F,, F. and F-
produce three functors, denoted by the same
notation, from the category (4,2)-hwoK to the cate-
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gory hoK, whose objects are the chain complexes
of commutative groups, and the morphisms are the
homotopy classes of chain maps.

Proposition 5. If h,g are two (4,2)-homo-
topic (4,2)-chain maps, then their images by the
homology functors H,,, H,. and H, - are equal, i.e.
Hn2(h)=Hn2(9), Hn.+(N)=Hx+(9) and Hy«(h)=Hx~(9).

Proof. The proof follows from Proposition 4
together with the fact that homotopic chain maps in
the category oK have the same images by the
homology functors H,. [J

Proposition 6. Let K=w(K,0), K’=w(K’,0)
be two strong (4,2)-chain complexes and let
h,g: K—>K’ be (4,2)-homotopic (4,2)-chain maps.
Then the (4,2)-homomorphisms (4,2)-H,(h) and
(4,2)-H,(g) are equal.

Proof. Since (4,2)-H,(K) = kero,/Imé,+1 and
(4,2)-H\(K*)=kerd’/Imo’ 4y, it is sufficient to show
that for any xekerd,, hy(x) ~ gn(X), where ~ is the
equivalence relation defined in 4°, for G = kero’,
and H=imo’,+1, i.e. it is sufficient to show that:

ha(X) — gn(X) € IMO’ 41, fOr any xe kero,.

By Remark 1, it is sufficient to consider the
case when h o g. Let s be a (4,2)-chain homotopy
from h to g. Then, Proposition 1 implies that F.(h)
and F.(g) are chain homotopic, i.e. that

0’ ne1(Sn(X)) + Sn-1(0n(X)) = hn(X) — Gn(X),
for every integer n and any xeK,. This, together
with the fact that 6,(x) = 0 for xekerd, implies that

hn(X) = gn(X) = 0’nea(Sn(X)) + 0 = O’ nea(Sn(X)),
i.e. that hp(X) — gn(X) € IMO’ ey [

As a consequence of Propositions 5 an 6, we
obtain the following corollaries.

Corollary 4. (a) If h is a (4,2)-homotopy
equivalence in (4,2)-woK, then H,,(h), H,(h) and
H,«(h) are isomorphisms.

(b) If his a (4,2)-homotopy equivalence in
(4,2)-s0K, then (4,2)-H,(h) is a (4,2)-isomorphism.

Corollary 5. If K and K’ are (4,2)-homotopy
equivalent (4,2)-chain complexes, then:

(1) Hn2(K) and H, »(K’) are isomorphic groups;
(2) Hy+(K) and H,(K’) are isomorphic groups; and
(3) Hy«(K) and H, «(K’) are isomorphic groups.

Moreover, if K and K’ are strong (4,2)-chain
complexes, then (4,2)-H,(K) and (4,2)-H.(K’) are
isomorphic (4,2)-commutative groups.
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(4,2)-BEPUKHA XOMOTOIINJA

Ajer Axmern’, londo JlumMoBcKn’

'Vuusepsurer [puurruna, [Tpumrraa, Kocoso
’UnctuTyT 3a MaTemaTHKa, [IpupoaHo-Maremariuky daxyrer, Yuusepsurer ,,C. Kupur u Metouj*,
Ckomje, Peny6nika Makenonuja

PasrnenyBana e (4,2)-BepmxkHa xoMOTOMNHja 3a (4,2)-BepHXKHU MPECIUKyBamba momery (4,2)-BepruKHH KOM-
ieKkcH (crmabu Witk jaku) U JOKakaHo e neka ako f u g ce (4,2)-BepmkHO XOMOTOIHH (4,2)-BEpHKHU TPECITUKYBaba,
THE UHIYLHPaaT UCTH XOMOMOPp(GU3MH Ha (4,2)-XOMOJIOLIKHUTE I'PYITH 01 COOZBETHUTE (4,2)-BepHIKHU KOMILIEKCH.

Knyunn 360poBu: komyratusau (4,2)-rpynu; cnab (4,2)-BeprkeH KOMIUTCKC; jak (4,2)-BepmXeH KOMILIEKC;

(4,2)-BepmxHO npeciuKyBambe; (4,2)-BeprkKHA XOMOTOITH]ja

Ipunosu, O00. tipup. maill. 6uoitex. nayku, MAHY, 35 (1), 47-51 (2014)






