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We consider (4,2)-chain homotopy for (4,2)-chain maps between (4,2)-chain complexes (weak or strong), and 

prove that if f and g are (4,2)-chain homotopic, then they induce the same homomorphisms on the (4,2)-homology 

groups for  the correspondent (4,2)-chain complexes. 
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INTRODUCTION 
 

The notions of (4,2)-chain complexes and 
(4,2)-chain homology groups were introduced and 

examined in [5]. In this paper we consider a notion 
of a (4,2)-chain homotopy, analogouos to the usual 
notion of a chain homotopy for chain complexes. 
Although the introduced notion of a (4,2)-chain 
homotopy, in general, does not behave in the same 
way as the usual chain homotopy (for example, the 

relation among (4,2)-chain maps defined by (4,2)-
chain homotopies is not an equivalence), it produces 
the same results  on the (4,2)-homology groups. 

For the usual notions about chain complexes 

of Abelian groups, chain homotopy and homology 

groups we refer to [4]. We recall the basic notions 

and properties about (4,2)-groups and (4,2)-chain 

complexes from  [1], [2], [3] and [5]. 

1o A (4,2)-semigroup is a pair (G,[ ]), where 

G is a nonempty set and [ ]: G4  G2 is a (4,2)-

operation, such that for any x,y,z,t,u,v  
G,  

 [[xyzt]uv] = [x[yztu]v] = [xy[ztuv]], 

i.e. [ ] is (4,2)-associative.  

Since the (4,2)-operation is associative, we 

use the notation [xyztuv] for [[xyzt]uv]. 

For (4,2)-semigroups (G,[ ]), (G’,[ ]’), a 

(4,2)-homomorphism is a map f: G  G’ such  that  

[f(x)f(y)f(z)f(t)] = (f(u),f(v)), where (u,v) = [xyzt] 

for any x,y,z,tG.  

Any (4,2)-semigroup (G,[ ]) induces a semi-

group ),G( 2  , where “ ” is the binary operation 

on G2
 defined by:  

(x,y) (u,v)=[xyuv], 

for any (x,y),(u,v)G
2
. 

We say that a (4,2)-semigroup (G,[ ]) is a 

commutative (4,2)-group if ),G( 2   is a commuta-

tive group.  

2
o 

Let (G,[ ]), be a commutative (4,2)-group. 

Then there is 0G and for each xG, there is a 

unique element –xG, such that for any x,y,z,t
 
G:  

(a) [xyzt] = [zyxt] = [xtzy] = [ztxy]; 

(b) if [xyzt] = (u,v), then [yxzt] = (v,u);  

(c) [00xy] = (x,y) and [xx(-x)(-x)] = (0,0); 

(d) if [xxyy] = (u,v), then u = v;  

(e) if [x(–x)y(–y)] = (u,v), then  v = –u; 

(f) the neutral element in ),G( 2   is (0,0); and  

(g) the inverse element for (x,y) ),G( 2   is the ele-

ment (x,y)
– 1

 = [yx(–x)(–x)(–y)(–y)]. 

3
o
 A subset H of G, for a given commutative 

(4,2)-group (G,[ ]), is a (4,2)-subgroup, if  u,vH, 

for any x,y,z,tH with  [xyzt] = (u,v).  
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For a (4,2)-subgroup (H,[ ]) of a commuta-

tive (4,2)-group (G,[ ]), in general, there is no way 

of defining a (4,2)-factor group, but for normal 

(4,2)-subgoups (4,2)-factor groups are defined. 

4
o
 A (4,2)-subgroup (H,[ ]) a of a commu-

tative (4,2)-group (G,[ ]) is said to be normal, if  

[x1x2H
2
] = [y1y2H

2
] [xjxjH

2
] = [yjyjH

2
], 

for any x1,x2,y1,y2G, and j=1,2, where   

[xyH
2
] = { [xyuv] | u,vH }. 

If (H,[ ]) is a normal (4,2)-subgroup of a 

commutative (4,2)-group (G,[ ]), the (4,2)-factor 

group (G/H,[ ]) is defined by: G/H = { x
~
 | xG}, 

where ~ is the equivalence relation on G defined by 

x~y [xxH
2

] = [yyH
2
]  i.e. x – yH, 

and [x
~
y

~
z

~
t
~
] = (u

~
,v

~
) for [xyzt] = (u,v). 

5
o
 The commutative (4,2)-groups and (4,2)-

homomorphisms, form the category (4,2)-Ab.  

Three functors, denoted by 2, + and *  

from the category (4,2)-Ab to the category Ab of 

commutative groups are defined as follows.  

For a commutative (4,2)-group G = (G,[ ]):   

(1) 2(G) is the group ),G( 2  , defined in 1
o
;  

(2) +(G) = (G,+), where x+y =u  if and only if 

[xxyy] = (u,u); and  

(3) *(G) = (G,*), where x * y = u  if and only if 

[x(–x)y(–y)] = (u,–u).  

If f:G
 
 G’ is a (4,2)-homomorphism, then, 

+(f ) = *(f ) = f and 2(f ):G
2 
 (G’)

2
 is defined 

by 2(f )(x,y) = (f(x),f(y)). 

6
o
 By analogy with the notion of a chain 

complex of Abelian groups, two types of (4,2)-

chain complexes of commutative (4,2)-groups, 

introduced in [5], are defined as follows. 

A weak (4,2)-chain complex, denoted by  

w(K,) , is a sequence 

   


 ])[,K()][,K(])[,K( 1n
1n

n
n

1n

of commutative (4,2)-groups
 ])[,K( n

, and (4,2)-

homomorphisms ])[,K(])[,K(: 1nnn  , such 

that for every integer n, 01nn  
, i.e. 

1nn   is 

the zero homomorphism. 

7
o 

If w(K,) is a weak (4,2)-chain complex, 

then Bn = Imn+1 and  Zn = kern are (4,2)-

subgroups of  Kn, and Bn  is a (4,2)-subgroup of Zn, 

for every integer n. In general, Bn is not a normal 

(4,2)-subgroup of Zn. 

8
o
 A strong (4,2)-chain complex, denoted by 

s(K,), is a weak (4,2)-chain complex with the 

additional requirement that Bn is a normal (4,2)-

subgroup of Zn, for every integer n.  

9
o 

If w(K,) and w(K’,’) are weak (4,2)-

chain complexes, then a (4,2)-chain map f from 

w(K,) to w(K’,’) is a sequence of (4,2)-homo-

morphisms 

f n : ])[,K(])[,K( '
nn  , n – integer 

such that 
'

n f n = f n–1 n , i.e. for every integer n, 

the following diagram commutes 

.])[,K(])[,'K(

ff

])[,K(])[,K(

'
n

'
n

1n

n1n

n
n

1n

















 

10
o
 The weak (4,2)-chain complexes and 

(4,2)-homomorphisms, form a category, denoted by 

(4,2)-wK, whose subcategory is (4,2)-sK of the 

strong (4,2)-chain complexes and (4,2)-homomor-

phisms.  

11
o
 Three functors, denoted by F2, F+ and F*  

from the category (4,2)-wK to the category K of 

chain complexes of Abelian groups are defined as 

follows.  

For a weak (4,2)-chain complex w(K,):   

(1) F2(w(K,)) is the sequence of the groups 2(Kn) 

with the boundary operators 2(n);   

(2) F+(w(K,)) is the sequence of the groups +(Kn) 

with the boundary operators  +(n); and  

(3) F*(w(K,)) is the sequence of the groups *(Kn) 

with the boundary operators  *(n).  

For a (4,2)-chain map f : w(K,)  w(K’,’):  

(1) F2(f)  is the sequence of  the homomorphisms 

2(f n): 2(Kn)
 
 2(Kn’);   

(2) F+(f) is the sequence of  the homomorphisms 

+(f n): +(Kn)
 
 +(Kn’); and  

(3) F*(f) is the sequence of the homomorphisms 

*(f n): *(Kn)
 
 *(Kn’). 

12
o
 For any integer n, let Hn: KAb be the 

functor such that for a chain complex K=(K,), 
Hn(K) is the n-th homology group of K, and for a 
chain map f : K  K’, Hn(f) : Hn(K)  Hn(K’) is 
the induced homormphism.  

13
o
 For any integer n, by composing the 

functors F2, F+ and F* with the functor Hn, three 

functors from (4,2)-wK to the category Ab are 

defined as follows. 

Let K=w(K,), K’=w(K’,’) be two weak 

(4,2)-chain complexes and let f : K  K’ be a chain 

map. Then:  

(1) Hn,2(K) = Hn(F2(K)) and Hn,2(f) = Hn(F2(f)); 

(2) Hn,+(K) = Hn(F+(K)) and Hn,+(f) = Hn(F+(f)); and 

(3) Hn,*(K) = Hn(F*(K)) and Hn,*(f) = Hn(F*(f)). 

Since a strong (4,2)-chain complex K=s(K,) 

is also a weak (4,2)-chain complex, the above 

homology groups Hn2,(K), Hn,+(K) and Hn,*(K) are 

defined. Since for a strong (4,2)-chain complex 

K=s(K,), Bn = Imn+1 is a normal (4,2)-subgoup of 
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Zn = kern, we have the (4,2)-factor group Zn/Bn. 

 14
o
 For any integer n, the functor (4,2)-Hn from 

the category (4,2)-sK to the category (4,2)-Ab is 

defened as follows. For any strong (4,2)-chain 

complexes K=s(K,), (4,2)-Hn(K) is the (4,2)-factor 

group Zn/Bn. It is shown in [5], that for a (4,2)-

chain map f : K  K’, where K and K’ are strong 

(4,2)-chain complexes, the map (4,2)-Hn(f) defined 

by (4,2)-Hn(f)(x
~
) = (f(x))

~
, for xkern is a (4,2)-

homomorphism from (4,2)-Hn(K) to (4,2)-Hn(K’). 

15
o
 By composing the functors 2, + and *  

from the category (4,2)-Ab to the category Ab, with 

the functor (4,2)-Hn,  three functors, 2  (4,2)-Hn, 

+  (4,2)-Hn , and *  (4,2)-Hn , from the category 

(4,2)-sK to the category Ab are obtained.  

Using the fact that (4,2)-sK is a subcategory 

of (4,2)-wK, it is shown in [5], that: 2  (4,2)-Hn 

is the restriction of Hn,2 on (4,2)-sK;  +  (4,2)-Hn 

is the restriction of Hn,+ on (4,2)-sK; and that   

*  (4,2)-Hn is the restriction of Hn,* on (4,2)-sK.  

 

(4,2)-CHAIN HOMOTOPY 
 

Let K=w(K,) and K’=w(K’,’) be two weak 

(4,2)-chain complexes, and let f,g : K  K’ be two  

(4,2)-chain maps.  

Let s be a sequence of (4,2)-homomorphisms: 

sn : (Kn, [ ])    (K’n+1, [ ]). 

The sequence s induces a sequence 2(s) of 

homomorhisms   
 

(2(s))n = 2(sn): ((Kn)
2
,  )    ((K’n+1)

2
,  ). 

 

Definition 1. Let K, K’, f, g and s be as 
above. The sequence s is said to be a (4,2)-chain 

homotopy from f to g, denoted by s: f  g,  if for 
every integer n and any  x,yKn:  

 

(A)                     [’n+1(sn(x)) ’n+1(sn(y)) sn – 1(n(x)) sn – 1(n(y)) gn(x) gn(y)] = (f n(x), f n(y)). 
 

Using the operation   from ((K’n)
2
,  ), the condition (A) can be written in the form 

  

(B)        2(’n+1)(2(sn)(x,y))   2(sn – 1)(2(n)(x,y)) = 2(f n)(x,y)  (2(gn)(x,y))
– 1

 . 

 

For every (4,2)-chain map, if for every 

integer n, we take sn to be the zero (4,2)-homo-

morphism, i.e. sn(x)=0, for every x, then, directly 

from the definition, it follows that s  is a (4,2)-chain 

homotopy from f to f. Hence, the relation  is a 

reflexive relation.  

In general, the relation  is not symmetric, i.e. 

the existence of a (4,2)-chain homotopy from f to g, 

does not imply the existence of a (4,2)-chain homo-

topy from g to f. Also, in general, the relation  is not 

transitive, i.e. the existence of (4,2)-chain homotopies 

from f to g and from g to h, does not imply the 

existence of (4,2)-chain homotopy from f to h. 

Although the relation  is not an equivalence 

relation, it satisfies several properties that will 

allow us to extend it to an equivalence relation, 

analogous to the equivalence relation of chain 

homotopy in the category K of chain complexes of 

commutative groups.  

Next, for (4,2)-chain homotopy s, let: F2(s) be 

the sequence defined by (F2(s))n = 2(sn); F+(s) be the 

sequence defined by (F+(s))n = +(sn) = sn; and F*(s) 

be the sequence defined by (F*(s))n = *(sn). 
 

Proposition 1. Let f ,g: KK’ be (4,2)-chain 

maps and let s  be a (4,2)-chain homotopy from f  

to g, i.e. s: f  g . Then, in the category K, where 

the chain homotopy is an equivalence relation, 

F2(s), F+(s) and F*(s) are chain homotopies, i.e.  

F2(s): F2(f) ~ F2(g); F+(s): f ~ g; and F*(s): f ~ g . 

Proof. The condition (B) implies that F2(s) is 
a chain homotopy from F2(f) to F2(g). Although, in 
general, a (4,2)-chain homotopy from g to f, does 
not exist, the sequence n: (Kn)

2
(K’n+1)

2
 defined 

by (x,y)=(sn(x),sn(y))
– 1

, is a chain homotopy from 
F2(g) to F2(f). For the transitivity, let s’ be a (4,2)-

chain homotopy from g to h. Then the sequence  
n: (Kn)

2
(K’n+1)

2
 defined by  

 (x,y) = (sn(x),sn(y))  (s’n(x),s’n(y)), 

 is a chain homotopy from F2(f) to F2(h).  

Next, we look at F+(s). By setting y=x in (A) 

we obtain [uuvvgn(x)gn(x)] = (fn(x),fn(x)), where  

u = ’n+1(sn(x)) and v = sn–1(n(x)). 

 This implies that u + v + gn(x) = fn(x), i.e.  

’n+1(sn(x)) + sn– 1(n(x)) = fn(x) – gn(x). 

Hence, s is a chain homotopy from f to g, i.e. 

from F+(f) to F+(g).  

The sequence –s, defined by (–s)n(x) = sn(–x) 

= –sn(x), is a chain homotopy from F+(g) to F+(f).  

If s’ is a (4,2)-chain homotopy from g to h,  

the sequence s+s’ defined by (s+s’)n(x)=sn(x)+s’n(x) 

is a chain homotopy from F+(f) to F+(h).  

The discussion for F*(s) is similar to the 

discussion for F+(s). Using the notation for u and v 

as above, by setting y = –x in (A) we obtain 

[uu’vv’gn(x))gn(–x)] = (fn(x),fn(–x)), where 

u’ = ’n+1(sn(–x)) and v’ = sn–1(n(–x)). 

Since sn , n , ’n+1 and gn are (4,2)-homomorphisms, 

it follows that u’ =’n+1(sn(–x)) = –’n+1(sn(x)) = –u,  
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v’ =sn–1(n(–x)) = –sn–1(n(x)) = –v and gn(–x) = –g(x), 

abd so, [u(–u)v(–v)gn(x))gn(–x)] = (fn(x),fn(–x)). 

This implies that u * v * gn(x) = fn(x), i.e. 

’n+1(sn(x)) * sn– 1(n(x)) = fn(x) * (–gn(x)). 

Hence, s is a chain homotopy from f to g, i.e. 

from F*(f) to F*(g).  

The sequence –s, defined by (–s)n(x) = sn(–x) 

= –sn(x), is a chain homotopy from F*(g) to F*(f).  

If s’ is a (4,2)-chain homotopy from g to h,  

the sequence s*s’ defined by (s*s’)n(x)=sn(x)*s’n(x) 

is a chain homotopy from F*(f) to F*(h).   
 

Corollary 1. Let f ,g: KK’ be (4,2)-chain 

 maps. A sequence s, of (4,2)-homomorphisms  

sn : (Kn, [ ])    (K’n+1, [ ]) 

is a (4,2)-chain homotopy from f to g, i.e. s: f  g  

if and only if the sequence F2(s) of homomorphisms 

(F2(s))n = 2(sn) is a chain homotopy from F2(f)  to 

F2(g), i.e. F2(s):  F2(f) ~ F2(g) . 

Proof. The proof, follows from Proposition 1 

and the condition (B).  
 

Proposition 2. Let K=w(K,), K’=w(K’,’)  

and K”=w(K”,”) be weak (4,2)-chain complexes. 

(a) If  f , g : K  K’ and  h : K’  K” are  

(4,2)-chain maps, and  f  g , then hf   hg . 

(b) If  f : K  K’ and  g , h : K’  K” are  

(4,2)-chain maps, and  h  g , then hf   gf . 

Proof. (a) Let s be a (4,2)-chain homotopy 

from f  to g, i.e. s: f  g . Using the fact that hn is a 

(4,2)-homomorphism and applying it to (A), we 

obtain that 

 

[(hn’n+1sn(x))(hn’n+1sn(y))(hnsn – 1n(x))(hn(sn – 1(n(y))(hngn(x))(hngn(y))] = ((hnf n(x)),(hnf n(y))). 
 

Next, using the fact that  h is a (4,2)-chain map, i.e. that hn ’n+1 =  ”n+1 hn+1, we obtain that  
 

[(”n+1(hn+1sn(x)) (”n+1(hn+1sn(y))(hnsn – 1(n(x))(hnsn – 1(n(y)) (hngn(x))(hngn(y))] = ((hnf n(x)),(hnf n(y))).   

 

The last equality is the condition (A) for the 

chain maps hf and hg and for the sequence hs of 

(4,2)-homomorpisms defined by (hs)n = hn+1sn. All 

this implies that hs: hf   hg . 

(b) The proof is similar to the prof of (a). Let  

s be a (4,2)-chain homotopy from g to h. Then the 

sequence sf of (4,2)-homomorpisms defined by 

(fs)n = fnsn is a (4,2)-chain homotopy from gf to hf, 

i.e. fs: gf   hf . 
 

We denote the symmetric and transititive 

closure of the relation  (i.e. the smallest equiva-

lence relation containing ) by ~ . With this, the 

relation ~ is an equivalence relation for the (4,2)-

chain maps in the category (4,2)-wK, and also in 

the category (4,2)-sK.  
 

Remark 1. The definition of ~ implies that 

for two (4,2)-chain maps f and g,  f ~g  if and only 

if there are (4,2)-chain maps h1,h2,h3, …,hm,hm+1 

such that for any j{1,2,3,…,m}, hj  hj+1  or  hj+1  

hj;   f = h1; and g = hm+1.  
 

Definition 2. Two (4,2)-chain maps f and g 

are said to be (4,2)-homotopic if  f ~ g . A (4,2)-

chain map f : K  K’ is said to be a (4,2)- 

homotopy equivalence if  there is a (4,2)-chain 

map g : K’  K such that gf ~1K and fg ~ 1K’ 

where 1K  and 1K’ are the identity (4,2)-chain maps 

for K and K’ respectively. Two weak (4,2)-chain 

complexes K=w(K,), K’=w(K’,’) are said to be 

(4,2)-homotopy equivalent, denoted by K ~ K’, if 

there is a (4,2)-homotopy equivalence f : K  K’ . 

Two strong (4,2)-chain complexes are said to be 

(4,2)-homotopy equivalent, if they are (4,2)-ho-

motopy equivalent as weak (4,2)-chain complexes.  
 

Proposition 3. Let K, K’, K” be (4,2)-chain 

complexes, and let g,h: K K’, g’,h’:K’ K”   be 

(4,2)-chain maps, such that g ~ h and g’ ~ h’. Then, 

the compositions gg’, hh’: K K” are (4,2)-homo-

topic, i.e. gg’~ hh’. 

Proof. Proposition 2 (a) and Remark 1 imply 

that  g’g ~ g’h, and Proposition 2 (b) and Remark 1 

imply that g’h ~ h’h. Thus, gg’~ hh’.  

For a (4,2)-chain map h, we denote the equi-

valence class h
~
 = {g | g ~ h}, by [h]. 

Proposition 3 implies the following: 
 

Corollary 2. All w(K,), the weak (4,2)-

chain complexes as objects and all [h], the (4,2)-ho-

motopy classes of (4,2)-chain maps, form a catego-

ry, denoted by (4,2)-hwK. All strong (4,2)-chain 

complexes and all (4,2)-homotopy classes of (4,2)-

chain maps, form a subcategory of (4,2)-hwK, 

denoted by (4,2)-hsK. 
 

Proposition 4. If h,g are two (4,2)-homo-topic 

(4,2)-chain maps, i.e. h ~ g, then their images by the 

functors F2, F+ and F* in the category of chain 

complexes K are homotopic maps, i.e. F2(h) ~ F2(g), 

F+(h) ~ F+(g) and F*(h) ~ F*(g).  

Proof. The proof follows from Remark 1 and 

Proposition 1.  

Proposition 4 implies the following: 
 

Corollary 3. The functors F2, F+ and F* 

produce three functors, denoted by the same 

notation, from the category (4,2)-hwK to the cate- 
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gory hK, whose objects are the chain complexes 

of commutative groups, and the morphisms are the 

homotopy classes of chain maps. 
 

 Proposition 5. If h,g are two (4,2)-homo-

topic (4,2)-chain maps, then their images by the  

homology functors Hn,2, Hn,+ and Hn,* are equal, i.e. 

Hn,2(h)=Hn,2(g), Hn,+(h)=Hn,+(g) and Hn,*(h)=Hn,*(g).  

Proof. The proof follows from Proposition 4 

together with the fact that homotopic chain maps in 

the category K have the same images by the 

homology functors Hn.  
 

Proposition 6. Let K=w(K,), K’=w(K’,’) 

be two strong (4,2)-chain complexes and let       

h,g: KK’ be (4,2)-homotopic (4,2)-chain maps. 

Then the (4,2)-homomorphisms (4,2)-Hn(h) and 

(4,2)-Hn(g) are equal. 

Proof. Since (4,2)-Hn(K) = kern/Imn+1 and 

(4,2)-Hn(K’)=ker’n/Im’n+1, it is sufficient to show 

that for any xkern, hn(x) ~ gn(x),  where ~ is the 

equivalence relation defined in 4
o
, for G = ker’n  

and H = im’n+1 ,  i.e. it is sufficient to show that: 

hn(x) – gn(x) im’n+1, for any x kern . 

By Remark 1, it is sufficient to consider the 

case when h  g. Let s be a (4,2)-chain homotopy 

from h to g. Then, Proposition 1 implies that F+(h) 

and F+(g) are chain homotopic, i.e. that  

’n+1(sn(x)) + sn– 1(n(x)) = hn(x) – gn(x),  

for every integer n and any xKn. This, together 

with the fact that n(x) = 0 for xkern implies that  

hn(x) – gn(x) = ’n+1(sn(x)) + 0 = ’n+1(sn(x)), 

i.e. that hn(x) – gn(x)  im’n+1 . 

As a consequence of Propositions 5 an 6, we 

obtain the following corollaries. 
 

Corollary 4. (a) If h is a (4,2)-homotopy 

equivalence in (4,2)-wK, then Hn,2(h), Hn,+(h) and 

Hn,*(h) are isomorphisms.  

(b) If h is a (4,2)-homotopy equivalence in 

(4,2)-sK, then (4,2)-Hn(h) is a (4,2)-isomorphism.   
 

Corollary 5. If K and K’ are (4,2)-homotopy 

equivalent (4,2)-chain complexes, then:  

(1) Hn,2(K) and Hn,2(K’) are isomorphic groups; 

(2) Hn,+(K) and Hn,+(K’) are isomorphic groups; and 

(3) Hn,*(K) and Hn,*(K’) are isomorphic groups. 

Moreover, if K and K’ are strong (4,2)-chain 

complexes, then (4,2)-Hn(K) and (4,2)-Hn(K’) are 

isomorphic (4,2)-commutative groups. 
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Разгледуванa е (4,2)-верижна хомотопија за (4,2)-верижни пресликувања помеѓу (4,2)-верижни ком-

плекси (слаби или јаки) и докажано е дека ако f и g се (4,2)-верижно хомотопни (4,2)-верижни пресликувања, 

тие индуцираат исти хомоморфизми на (4,2)-хомолошките групи од соодветните (4,2)-верижни комплекси. 
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