
ПРИЛОЗИ, Одделение за природно-математички и биотехнички науки, МАНУ, том 35, бр. 1, стр. 53–56 (2014) 

CONTRIBUTIONS, Section of Natural, Mathematical and Biotechnical Sciences, MASA, Vol. 35, No. 1, pp. 53–56 (2014) 

 

Received: March 22, 2014                                                                                                                                 ISSN 1857–9027 

Accepted: May 5, 2014                                                                                                                                            UDC: 511.17 

 

Educational paper 
 

 

 

 

 

AN OVERLOOKED IDENTITY IN NUMBER THEORY 
 

Stevo Bozinovski 

 

Department of Mathematics and Computer Science, South Carolina State University, USA 

and 

Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University,  

Skopje, Republic of Macedonia 

 
 e-mail: SBozinovski@scsu.edu  

 

 

It is pointed out toward an overlooked identity in Number Theory. Using the observed identity, a new result in 

Number Theory is obtained, and a new proof of a previously known result is given. Educational aspects are also dis-

cussed, pointing toward possible explanation why the observed identity, which looks trivial once observed, has not 

been pointed out so far.   
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INTRODUCTION 
 

Number Theory, along with geometry, is the 
oldest mathematical discipline. Today it is under-
stood as discovering and studying properties of in-
tegers in various forms as they appear in nature and 
mathematics.  

Among oldest topics considered in Number 
Theory are squares of numbers, as well as sums and 
differences of squares of numbers in relation to ge-
ometric shapes. The oldest known written work, the 
clay tablet cataloged as Plimpton 322, dated 1800 
BC, has been found in Larsa, Mesopotamia. In the 
interpretation of the work (e.g. [1]) it has been 
pointed out that sum of squares and difference of 
squares are connected as Pythagorean triplets  
  

(a2 – b2), 2ab, (a2 + b2). 
 

Today the school system provides knowledge 

on the subject, and some very well known identities 

and names are:  
 

a2 + b2 = c2  Pythagorean triplets 

a2 – b2 = (a + b)(a – b) Factoring the difference of                                          

two squares 

1 + 2 +…+ n = n(n+1)/2  Sum of the first n natural   

     numbers 

Tn = n(n+1)/2  Triangular numbers 

 

The literature on the subject is voluminous 

and we will mention recently published book [2] as 

well as more classical ones [3, 4]. There is a mono-

graph entirely devoted to the sum of squares of in-

tegers [5].  

This paper points out that although properties 

of sums and difference of squares have been studied 

since beginning of Number Theory, there is a simple 

and useful property that has been overlooked so far.  

In the sequel the paper states, as Lemma 1, the 

main observation, about the difference of squares of 

pairs of consecutive integers. Then it points out the 

usefulness of the observed identity, by using it to 

prove one known and one new result in Number 

Theory.  

 

An overlooked identity  

in Number Theory 
 

Lemma 1. The sum of two consecutive descending 

integers is equal to the difference of their squares, 

i.e. 

 

(nZ) : (n+1) + n = (n+1)2 – n2  (1) 
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Proof. 
 

 (n+1)2 – n2  =  n2 + 2n + 1 – n2 = 2n+1 =   

(n+1) + n.  
 

As illustration let us consider a positive (e.g. 

n = 9), and a negative (e.g. n = –9) integer.  

In the case n = 9 we have:  

10+9 = 19 = 102 –92. 

In the case n = –9 we have  

–8 – 9 = –17 = (–8)2 – (–9)2. 

In the case n = 0 the equation (1) gives 1 = 1.  

A visual illustration of Lemma 1 can be giv-

en for positive integers, and for case n = 4 it is giv-

en in Figure 1. By analogy, an illustration can be 

given for any n.  
 

 

 

                    4 

                    5                               42 

 

 

 

                          52  
 

Figure 1. A visual illustration of Lemma 1 

for the case n = 4. 
 

 

The identity is useful for proving other  

properties of numbers 
 

This section shows that the observation (1) is 

useful in proving other properties of numbers, in this 

case a property of alternate sum of squares of integers.  
 

Corollary 1: The alternate sum of the squares of 

consecutive descending numbers down to 0, is 

equal to the sum of those numbers. Formally: 
  

2

)1n(n
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n
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n
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In expanded form we have  
 

n2 – (n – 1)2 +…+ 22 – 12 + 02 = n + (n – 1) +…+ 2 + 1 + 0  

or 
 

n2 – (n – 1)2 +…– 22 + 12 – 02 = n + (n – 1) + … + 2 + 1 + 0 
 

For example: 
 

42 – 32 + 22 – 12 + 02  = 4 + 3 + 2 + 1 + 0. 
 

Proof of Corollary 1 using Lemma 1. Just ob-

serve directly, pairs of numbers on both sides of 

equation (2): by Lemma 1 they are equal, so the 

whole equation (2) is valid. Formally, two cases 

should be considered: 

Case 1: Even number of nonzero elements in the 

sum:  
 

n2 – (n – 1)2 +  … +22 – 12   = 

 

n + (n –1)  +  …    + 2 + 1 
 

Case 2: Odd number of nonzero elements in the 

sum:  
 

n2 – (n –1)2 +  …  +32 – 22  +12  =  

 

n + (n –1) +  …     + 3 + 2  + 1     
 

Let us note that the statement in Corollary 1 

is very well known exercise for sums of integers 

and can be found in many textbooks. However, to 

the best of our knowledge, the proof presented 

above is the simplest one.   

 

Obtaining a new result in Number Theory  

using Lemma 1 
 

The statement (3) can also be expressed in 

the following form: 
  

S(n,1) = ASQ (n, 1), 
 

where S(n,1) is the sum of consecutive numbers 

from n down to 1, and ASQ(n, 1) is the alternate 

sum of squares of consecutive numbers from n 

down to 1.  

Let S(n, n-k) and ASQ(n, n–k) be, respec-

tively, the sum of consecutive numbers and the al-

ternate sum of squares of those integers, from n 

down to n–k, where 0< k < n. 

Here we will show that  
 

S(n, n–k) = ASQ (n, n–k) 
 

when the number, k+1, of elements in the sums is 

even, i.e. when k is odd.   

In other words we will show that   
 

 
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k

0i

k

0i

2i )in()in()1( , 

 

where  k  is an odd number, 0<k<n. 

For example, for k = 3, k+1 = 4 (number of 

elements in the sum), n = 10 we have:  
 

102 – (10 – 1)2 + (10 – 2)2 – (10 – 3)2 = 

10 + (10 – 1) + (10 – 2) + (10 – 3) 
 

 102 – 92 + 82 –72 = 10 +9 + 8 + 7. 
 

Theorem 1. Let S(n,n–k) and ASQ(n,n–k) be as 

above, and let k be an odd number, 0<k<n. Then  
 

 ASQ (n,n–k) = S(n,n–k) .       (3) 
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Proof. Write the statement (3) in expanded form  
 

n2 – (n–1)2 + … + (n– (k–1))2 – (n–k)2 = 

n + (n–1) + …+ (n– (k–1)) + (n–k)          (4) 
  

Because the number of elements in the sums 

is even, we partition the sums on both sides of (4) 

into pairs:   
 

  n2 – (n–1)2  +… +(n– (k–1))2 –(n–k)2  = 

 

n + (n–1)  + … + (n– (k–1)) + (n–k). 
 

By Lemma 1, the resulting numbers for each 

of the corresponding pairs are equal, so the whole 

equation (4) is correct.  

Theorem 1 and Corollary 1 imply the follow-

ing: 

Corollary 2. Let n be a positive integer. Then, for 

any k, such that k is odd and 0<k<n or k = n–1,   
  

ASQ (n,n–k) = S(n,n–k).  

 

DISCUSSION 
 

Here we discuss some topics relevant to 

Lemma 1 and Theorem 1.  

 

Why statement in Lemma 1 has not been  

pointed out so far 
 

The Lemma 1 points out to a mathematical 

result that is very elementary, and it has been in 

front of eyes of mathematicians since difference of 

squares has been observed. It is interesting to think 

why it has been overlooked so far.  

One possible answer to that question is that 

the knowledge of factoring the difference of two 

squares has overshadowed the identity (1). Because 

of the "difference of squares factorization rule"  
  

a2 – b2 = (a+b)(a–b) 
 

every time the pattern a2 – b2 appears in front of a per-

son trained in mathematics, almost automatically one 

tends to factor it. The factoring of (1) produces   
 

(n+1)2 – n2 = ((n+1) + n)((n+1) – n) = 2n+1 
 

which overshadowed the identity (1).  

 

Simplicity of proving Corollary 1  

and Theorem 1 using Lemma 1 
 

The proof using Lemma 1 in both Corollary 1 

and Theorem 1 does not use the fact that both sum of 

numbers and alternate sum of squares are triangular 

numbers. The proof is direct, recognizing identity 

patterns of both sides of equations (2) and (3).  

Mathematically speaking, the proof of Corol-

lary 1 presented here is proof by partitioning. The 

problem is divided into small sub-problems which 

in this case are directly solvable using Lemma 1.  

 

Scientific merit 
 

Two new statements in Number Theory are 

presented.  The first one is the observation stated in 

Lemma 1. It can be observed directly, and might be 

considered trivial, once it is pointed out. The sec-

ond new statement, the Theorem 1, needs a previ-

ous result in order to be proven directly, and in this 

case the Lemma 1 is such a result. 

 

Educational merit 
 

The Lemma 1 shows that in both mathemat-

ics and sciences there are truths that are in front of 

our eyes but we do not notice them. In many cases 

it is because we think in terms "inside the box" and 

our thought process is rather structured. In case of 

identity (1) thinking "inside the box" means that 

whenever the pattern a2 – b2 appears, we tend to 

factor it as (a+b)(a–b). Thinking "outside the box" 

allows to see that in a special case when two num-

bers a and b are consecutive integers (a= n+1, b=n), 

and obtained result is (n+1)2 –n2 = 2n+1, to look a 

step further, and observe the beauty of the identity 

(n+1)2 –n2 = (n+1)+n. And in addition to the ob-

served interesting result, it is good to show that the 

observed identity is useful.  

 

CONCLUSION 
 

A new identity in Number Theory is pointed 

out. Example of usefulness of the observed identity 

is shown by obtaining a new statement in Number 

Theory. As educational merit, this is an example of 

"thinking outside the box". By thinking "outside the 

box", the new identity has been observed although 

it has been overshadowed by a factorization rule.  
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Укажано е на превиден идентитет во теоријата на броеви. Користејќи го новосогледаниот идентитет, 

добиен е нов резултат во теоријата на броеви, како и нов доказ на веќе познат резултат. Дискутирани се и 

образовни аспекти, при што е укажано на можно објаснување зошто овој идентитет, кој изгледа тривијален 

откако ќе биде укажано на него, не бил согледан досега.  

 

Клучни зборови: теорија на броеви; превиден идентитет; сума на броеви; знак-менувачка сума на 

квадрати; Плимптон 322 

 


