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INTRODUCTION

Let us start with the topological spaces (X, T")
and (Y,7") where X ={1,2,3,..,10} , Y =
{1,2,3,..,20} , 7={X,0,{123}} and T’ =
{Y,0,{1,2,3,4,5,6}}. These two topological spaces
are not homeomorphic as there is no bijection be-
tween X and Y. But one can feel that these two
spaces are the same in some sense. This feeling mo-
tivates us to define the concept of topomorphism. A
topomorphism from a topological space (X,7) to a
topological space (Y,7") is defined as a bijection
from T to 7 preserving finite intersection and arbi-
trary union. In this paper we define and discuss the
concept of topomorphism.

In Section 2 we give all the definitions and no-
tations which we use in this paper, in Section 3 we
define topomorphism and investigate certain proper-
ties, in Section 4 we study the relationship between
topomorphism and homeomorphism, in Section 5
we discuss the concepts of compact subsets and con-
nected subsets of a topological space in the context
of topomorphism and in Section 6 we discuss topo-
morphism in the context of bases for topologies; fi-
nally we end the paper with a few concluding re-
marks motivating further research in this area.

DEFINITIONS AND RESULTS

First we fix the notations. Let R denote the set
of real numbers, @ denote the empty set. We use the
notation E€ to denote the complement of E in the
corresponding space unless there is no ambiguity.
For sets A and B, by A — B we denote the set AN
BE. If F:T — T'is a bijection, then for B € T/, by
F~1(B) we denote the unique element A € T such
that F(A) = B. For any function f: X - Y, ifAC
Xand BCY, by f7(A) and f< (B) we denote the
sets {f(a)/a € A} and {a € A/f(a) € B} respec-
tively. These sets are usually denoted by f(A) and
f~1(B);if Fand f are atopomorphism and a home-
omorphism from (X,T) to (Y,7"), to avoid confu-
sions (for example between F(A), the image of the
element A in T and f(A), the set of all images of
points in A) we use these notations.

A bijective open continuous function from a
topological space to a topological space is called a
homeomorphism. For terminologies and notations
used in this paper which are not mentioned here we
refer to [1]. However it is worthwhile to state that we
assume one point sets are closed in regular spaces
and normal spaces.
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Topomorphism

We start with the definition of a topomor-
phism.

Definition 3.1. Let (X, T) and (Y, T") be top-
ological spaces. A bijective function F:T — T is
said to be a topomorphism from (X, T) and (Y,7")
if

i F(U A,) = UF(A,) for any collection
{A,} of elements of T".

ii. F(ANB)=F(A)nF(B)for any ele-
ments A and B of 7.

If there is a topomorphism from (X,T) to
(Y,T"), we say, as usual, (Y,T") is topomorphic to
X, 7).

Example 3.2. On R, consider the topologies
73 ={0,R,(0,1),(0,2)}, 7> = {D,R,{3},{3,4}}
and 73 = {@,R,(—,0],(0,)} . The mapping
F:7, - 7, , taking the sets @,R,(0,1),(0,2) to
?,R,{3},{3,4} respectively, is a topomorphism
whereas there is no topomorphism from 7; to 75.

Theorem 3.3. Let (X,7) and (Y,T") be topo-
logical spaces and let F:7 — 7' be a topomor-
phism. Then

i. For AABEeT, if AS B, then F(4) S
F(B) and if A is strictly contained in B, then F(A)
is strictly contained in F(B).

ii. FX)=YandF(0)=0.

Proof. Let A B. Then AUB =B and
hence F(A U B) = F(B) which implies that F(A) U
F(B) = F(B); hence F(A) < F(B). This proves the
first part of (i); as F is a bijection, the second part of
(i) follows.

LetU = F~1(Y). Then F(U) =Y.As U C X,
F(U)c F(X) and hence F(X)=Y . Simi-
larlyF (@) = 0. o

Theorem 3.4. The composition of topomor-
phisms is a topomorphism and the inverse of a topo-
morphism is a topomorphism.

Proof. Let F;:(X1,77) - (X,,7,) and
Fy: (X5, T,) = (X3,73) be topomorphisms. Let the
composition F, o F;: (X1,77) —» (X3,73) be de-
noted by F. As F; and F, are bijections, F is also a
bijection. Let {4,} be a collection of elements of 7;.
Now

F(UAy) =F, (F1(U Aa)) = Fz(U Fy (Aa))
=U F,(F1(42)) =V F(Aq)
and similarly
F(AnB) = F(A) N F(B).

Thus F is a topomorphism.

To prove the second part, let F: (X,T) —
(Y,T") be a topomorphism. As F is a bijection, its
inverse F~1: (Y,T') » (X,T) exists and is a bijec-
tion. Let {B,} be a collection of elements of 7. For
each a, let A, = F~1(B,). Then B, = F(4,) and
F(UA,) =UF(A,) . Thus F(UA,) =UB, and
hence U 4, = F~1(U B,) which in turn gives

F~1(UB,) =uU F1(B).

Let B;. B, be elements of T'. For i = 1,2, let
A; = F~Y(B;). Then as F is a topomorphism, we
have F(A;NnA4,) = F(A;))NF(4,). So F(4;n
A)) =B, NnB, and hence A4, NA,= F (B N
B,) which implies that

F~1(ByNBy) = F~'(By) N F7'(By).

Thus F~1 is a topomorphism. O

It is easy to see that the identity map from T
to T is a topomorphism and hence by Theorem 3.4,
the relation ~ defined on the class of all topological
spaces by “(X,T) ~ (Y,T") if there is a topomor-
phism from (X,T) to (Y, T")  is an equivalence re-
lation.

Theorem 3.5. Let F: (X,T) » (Y,T') be a
topomorphism. Then

i (X,7) is connected if and only if
(Y,T") is connected.

ii. (X,T) iscompactifandonlyif (Y,T")
is compact.

Proof. Let (X,T) be connected. Let us as-
sume that (Y,T") is not connected. Then there are
nonempty sets By, B, € T such that

31UBZ=YandBlﬂBz=®
Let
Al = F_l(Bl) and AZ = F_l(Bz).

As B; and B, are nonempty sets, 4; and A,
are nonempty sets. Now

F(Alqu): F(Al)UF(A2)= BlUBZ=Y

=F(X)
and
F(A;nA,)= F(A))NF(A,)= B NB, =0
=F(©)

Hence, as F is a bijection,
Al UA2 =XandA1 nAZ = @

This is a contradiction proving a part of (i).
Let (X,7) be compact. Let {B,}be an open
cover for Y. Let A, = F~1(B,). Then
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F(UA,) =UF(A,) =V B, =Y = F(X).

and hence U A, = X. Thus {A,} is an open cover
for X. As X is compact, this open cover has a finite
subcover, say {A44,4,, ..., A,}. Then{By,B,, ..., B}
is a finite subcover of {B,} proving a part of (ii).
Since F~1'is also a topomorphism, converse parts
follow. m

Topomorphisms and Homeomorphisms

Let us now see a relation between topomor-
phism and homeomorphism.

Definition 4.1. Let f: (X,T) — (Y,T") be a
homeomorphism. Let F: T — T’ be defined as

F(4) = f~(A).
Then F is a topomorphism and is called the
topomorphism induced by the homeomorphism f.

As a homeomorphism takes open sets to open
sets, the function F is well defined; since f is a bi-
jection and £ (B) is open in X whenever B is open
inY, we see that F is a bijection. Now

F(UAa) = f_)(UAa) =Uf_)(Aa) =UF(4y)
and
F(AnB)= f7(AnB)= f7(A)n f~(B)
= F(A) n F(B).

Thus Definition 4.1 is well-defined.

Though every homeomorphism induces a to-
pomorphism, not all topomorphisms are induced by
homeomorphisms, even if the two topological
spaces have the same cardinality; the topomorphism
F of Example 3.2 is not induced by any homeo-
morphism as £~ ({3}) cannot be an uncountable set
under any bijection. Thus the concept of topomor-
phism is a proper generalization of homeomorphism.

Topomorphism will not preserve the separa-
tion properties like Hausdorff and regular as seen in
the following example.

Example 4.2.

Let X ={1,2}, 7 ={0,X, {1},{2}},Y =R
and7'’ = {@,R, (—, 0], (0,)}. Then (X,T) and
(Y,T") are topomorphic, (X, T) is Hausdorff, regu-
lar and normal whereas (Y,T') is not even a
Hausdorff space.

But if one point sets are closed in one of the
two spaces between which a topomorphism exists,
then we get interesting properties.

Theorem 4.3 Let F: (X,T) — (Y,T") be a to-
pomorphism and let one point sets in (X,T) be

closed. Then (X,T) is homeomorphic to a subspace
of (Y,T").

Proof. Define a function f: X — Y as follows:

Forany a € X, as {a} isclosed in (X,T), X —
{a}eT. As X—{a} £X, FX—-{a}) & F(X).
Choose an elementiny € F(X — {a}) and declare it
as f(a). (This is possible by the axiom of choice.)

We first prove that F(X — {a})is the largest
open set not containing f(a). There is no open set
strictly between X — {a} and X. Hence, by Theorem
3.3, there is no open set strictly between F(X — {a})
and F(X). As F(X) =Y, F(X) contains f(a) .
Hence F(X — {a}) is not contained in any larger
open set not containing f (a). Furthermore the union
of all open sets not containing f(a) (say V, ) is
clearly the largest open set not containing f (a). But
then F(X — {a}) € V, and hence F(X —{a}) = V.
Thus F(X — {a}) is the largest open set not contain-
ing f(a).

We now prove that f is one-to-one. Let
a,,a, € X be such that a; #a,. LetV; = F(X —
{a;}) and V, =F(X —{a,}) . By definition
f(a;) € V;. We claim that f(a;) € V5. If f(a;) ¢
V,,thenV; UV, &Y, hence

FX)=F(X —{a; DU X —{az})
= FX—{aDUFX —{a,) =V UV, &Y.

This is a contradiction to the fact that F(X) =
Y. So f(a,) €V,. But f(a,) € V,. Thus f(a,) #
f(ay) and hence f is one-to-one.

Now let

v ={f(&)/a € X}.

Then Y* is a subset of Y and f is a bijection
from X to V™. Let

T = {f7(U)/UEeT}

We now prove that 7* = {¥Y nY*/V € T}
which will imply that (Y*,7*) is a subspace of
Y, ).

Let W eT* Then W = f~(U) for some
U € 7. Since f is a bijection, U is unique. We claim
that W =FU)nY*. Let beW . Then b=
f(a) for some a € U. Suppose that f(a) & F(U).
Since F(X — {a}) isthe largest open subset of Y not
containing f(a) and F(U) is an open subset of
Y not containing f(a) we have F(U) € F(X —
{a}) and hence U € X — {a}. This is a contradiction
to the fact that a € U. Thus f(a) € F(U) and hence
b € F(U). This proves that

WcFU)NY™

To prove the reverse inclusion, let b €
F(U)NY*. Then b = f(a) for some a € X. We
claim that a € U. Suppose that a € U. Then U <
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X —{a}and hence F(U) € F(X — {a}). As f(a) is
in F(U) and as f(a) cannot be in F(X — {a}) we
get a contradiction. Thus a € U and hence f(a) €
f~(U). Thus b € f~(U) and hence b € W. This
implies that F(U) nY* € W and hence we get

W =FU)NnY"

So every member of 7 is of the formV n Y™
for some V € 7'. We shall now prove that every set
of the fromV nY* forsomeV € T' isin T,

LetVeT andletW =V NnY* AsF is sur-
jective, V. = F(U) for some U € T. We claim that
F7(U)=W. Let b € f~(U). Then b = f(a) for
some a € U. Suppose that f(a) & W.Since f(a) €
Y* we have f(a) ¢ V = F(U). But, as F(X — {a})
is the largest open set not containing f(a), we see
that F(U) € F(X —{a}) and hence U € X — {a}.
This implies that a ¢ U. This is a contradiction to
the fact thata € U. So b = f(a) € W and hence

P cw.

To prove the reverse inclusion, let b € W.
Thenb e VNY*. Sob = f(a) forsome a € X. As
beV, f(a)e V and hence f(a) € F(U). We
claim that a € U. Let us assume that a ¢ U. Then
Uc X —{a} and hence F(U) € F(X —{a}). But
as f(a) € F(X —{a}), f(a) & F(U). This is a con-
tradiction to the fact that f(a) € F(U). This proves
that a € U and hence b = f(a) € f~(U). This
shows that

w c f~(U).
Therefore, f~(U) = W which proves that
T ={yYnYy*/V € T'}

and hence (Y*, T) is a subspace of (Y, 7).
In the above discussion we have proved that,
forallU € T,

FU) = FU)NY™

Finally we prove that fis a homeomorphism
from (X,7) to (Y*,T*). As f is a bijection, it re-
mains to prove that f is continuous and it is an open
mapping. LetW € 7*. Then W =V nY* for some
V eT'.SinceV =F(U) for some U € T, we have
W=FU)nY* for some U. So we have W =
f~(U). This implies that U = f<(W) as f is a bi-
jection. This shows that f is continuous. If U € T,
then f~7(U) = F(U) nY* € T*. This shows that f
is an open mapping. So f is a homeomorphism from
X, T)to (Y*,T).

It is interesting to note that for any a € X,
f(a) ¢ F(X —{a}) and f(a) € F(X — {b}) for all

b € X other than a. The above theorem can be re-
stated as follows:

Theorem 4.4. If two spaces are topomorphic
and one point sets in one of the spaces are closed,
then the other space contains a subspace homeo-
morphic to the first space.

Furthermore, if F: (X,7) — (Y,T") is a topo-
morphism and if (X,7) is Hausdorff, then, as one
point sets in a Hausdorff space are closed, Ycontains
a Hausdorff subspace homeomorphic to (X, 7). The
same is true for all topological properties like regular
space and normal space.

As every space is a subspace of itself, the as-
sumption “one point sets are closed" is not a neces-
sary condition in the above theorem. However, the
importance of the assumption can be seen from the
following example.

Example 45. Let X =Y = R. Let

Tx = {0,[0,1],[0,2],{3},[0,1] U {3},[0,2]
U {3}, R}

and

Ty = {0,{1},{1,2}, [3,4], [3,4] U {1}, [3,4]
U {12}, R}.

Then (X,7y) and (Y,7y) are topological
spaces. They are topomorphic under the mapping
which takes the sets of 7y to sets of Jy in the order
we listed them above. But there is neither a subspace
of Y homeomorphic to X nor a subspace of X ho-
meomorphicto Y.

Let us justify our claim in the example. If pos-
sible let (4,T,) be a subspace of Y homeomorphic
to (X, Jx). As every member of 7, is of the form
VNnA for some V €Ty, and as cardinality of Ty
and the cardinality of 7, must be equal, A must con-
tain both 1 and 2; for otherwise the cardinality of 7,
will be less than that of 7. Let V = [3,4] N A. Then

T, =1{0,{1},{1,2},V,V u {1},V U {1,2},A}.

There is no homeomorphism between (4, 7,)
and (X, Jy) because 7 contains only two finite sub-
sets whereas 7, contains at least three finite subsets.

If possible let (B, T3) be a subspace of X ho-
meomorphic to (Y, 7y). Then B must contain 3. Let
C=1[0,1]nB and D =[0,2] n B. Then

Tz ={0,C,D,{3},Cc u{3},D U {3},B}.

If £ is a homeomorphism from (B,J3) to
(Y,7y) , then f(3)=1. As 3 ¢(C,3 ¢ D and
f(3) =1, either CU{3} or DU{3} must be
mapped onto {1,2}. So one of the sets C and D must
contain only one point and that point must be
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mapped onto 2 under f. Since C € D, D cannot be
an one point set. So C is an one point setand let C =
{c}. So

T ={0,{3},{c},D,{3,c},D U {3}, B}.

There is no homeomorphism between (B, 73)
and (Y,7y) because 7y contains only three finite
subsets whereas T contains at least four finite sub-
sets.

Let us consider a converse of Theorem 4.4. If
(X,7) and (Y,T") are spaces in which one point sets
are closed and if each of the spaces has a subspace
homeomorphic to the other, can we conclude that
there is a topomorphism between the spaces? We
cannot conclude so. For example each of the topo-
logical spaces [0,1] and (0,2), with usual topology,
has uncountably many subspaces homeomorphic to
the other; but there is no topomorphism between
them by Theorem 3.5 as one is compact and the other
is not.

We now prove that a bijection from X to Y
which coincides with a topomorphism is necessarily
a homeomorphism. So a bijection between two top-
ological spaces preserving arbitrary union and finite
intersection of open sets is necessarily a homeo-
morphism.

Theorem 4.6 Let F: (X,T) -» (Y,T") be ato-
pomorphism and let f: X = Y be a bijection such
that

1) FA)=f"(A)foreveryAET.

Then f is a homeomorphism from (X,T) to
(Y,T") and the topomorphism induced by f is F.

Proof. We first note that (1) is equivalent to

(2) for every A € T, we have x € A if and only if
f(x) € F(4)
and this equivalent to
(3) for every B € 7', we have y € B if and only if
f1) e F1(B).

But by using (3), we see that
(@) F~Y(B)=f“(B) foreveryB €7".

It is easy to see that (1) and (2) prove that f~1
and f are continuous as F(A) and F~1(B) are open
setsin 7" and 7. Thus f is a homeomorphism. i

Compactness and Connectedness
in the Context of Topomorphisms

Let (X,7)and (Y,T") be topological spaces.
Let ¢ and C' denote the collection of all closed sets
of (X,T) and (Y, T") respectively. With every topo-
morphism let us associate a function F, from C to ¢’
and study its properties.

Theorem 5.1. Let F: (X,T7) —» (Y,T') be a
topomorphism. Define F.: C — C’ as follows:

F.(4) = [F(A9)]°
where A = X — A.Then

1. F.(AUB) =F.(A)UF.(B) for any sets
AandBinC.
2. F.(nA,) =nEF.(4,) for any collection

{A,}of setsin C.
3. F. is a bijection from Cto C' with inverse
F 1 defined by
F71(B) = [F7'(B)]".

4. i) F.(0)=0and F.(X) =Y.

ii)IfAc Bc X, thenF.(A) S F.(B);ifA &
B C X, then F.(A) & F-(B).

iii) IfA € B cY,then E-1(A) € F~1(B); if
A € BCY, then E-1(4) € E~1(B).
5. i) F7Y(AuB) =F 1(A)uEFE1(B) for any
setsAand BinC'.

i) F-1(nB,) =n F-1(B,) for any collec-
tion {B,} of setsin C'.
6. i) If Ais closed and B is openin (X,T) with
A C B, then E.(4) € F(B).

ii) If Aisopenand B is closed in (X,T)
with A € B, then F(A) € F.(B).

iii) If Aisclosed and B is open in (Y,T")
with A € B, then E-1(A) € F~1(B).

iv) If AisopenandB is closed in (Y,T")
with A € B, then F~1(A) € E."*(B).
Proof.

F.(AuB) = [F((AUB))]° = [F(A° n B)]*
= [F(A°) nF(B)]*
= [F(A9)] U [F(B)]® = F.(A) U F.(B).
This proves (1); (2) can be proved similarly.
LetA € C.

F (E@) = (F(R@)7])

= (FTH([F(A)])De
= (FTHF(A9)])° = (A9)°
= A.

Similarly for B € ¢', E.(F,1(B)) =B and
hence F, is a bijection whose inverse is given by
F7Y(B) = [F~1(B®)]¢. Thus (3) follows.

The identities F. (@) = @ and F.(X) =Y fol-

low from the definition.
If AcBc X, then B¢ € A° and hence

F(BS) € F(A®). This implies that (F(AC))CQ
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(F(BC))C and hence F.(A) S F.(B). The other re-
sults in (4) follow similarly.

All results in (5) follow from the definition.

Let A beopenand B be closedin (X,7) and
letASB.SinceAS B, AnNB¢ =0; thus F(AnNn
B) =@ and hence F(A)NF(BS)=0 ; thus
F(4) < (F(B%))® and hence F(A) C F,(B). Other
results in (6) follow similarly. O

Theorem 5.2. Let F: (X,T) - (Y,T') be a
topomorphism. If A is open and closed, then
F(A) = F.(4) = (F(49))" = (F.(4%)".

Proof. Let B = A€. Since 4 and B are com-
plement to each other, F(A) and F(B) are comple-
ment to each other. Thus

F(4) = (F(B)) = (F(49))".
Other results follow similarly.

Theorem 5.3. Let F: (X,T) —» (Y,T') be a
topomorphism. If A is a closed compact set in X,
then F.(A) is compactinY.

Proof. Since A is closed, F.(A) is meaningful
and is closed in (Y,T"). Let {V,} be an open cover
for E.(A). For all a let U, = F~1(V,). We claim
that {U,} is a cover for A. Now

F.(A)cuV,=UF(U,) = F(UU,).
Thus by (6) of Theorem 5.1,
F(F.(A) € FH(F(U Uy))
and hence
AcCul,.

Thus {U,} is an open cover for A and hence
has a finite subcover, say {U;, U,, ..., U, }. That is

ACU,UU, U ..UU,.
Therefore
F.(A) € F(U; VU,V ..uUy,)

C F(U)UFU,) VU ..UF(U,
= V]_ UVZ U UVn

Thus {V;,V,, ..., V,} is a finite subcover for
F.(A) and hence F,(A) is compact. o

Corollary 5.4. Let (X,7) be a Hausdorff
space and F: (X,7) — (Y,T") be a topomorphism.
If A isa compact subset of X, then F.(A) is compact
inY.

Theorem 5.5. Let F: (X,T7) —» (Y,T') be a
topomorphism.

i If A is an open connected subset of X,
then F(A) is a connected subset of Y.

ii. If Ais a closed connected subset of X,
then F.(A) is a connected subset of Y.

iii. If Ais a connected subset of X, then
F,(A) is a connected subset of Y where A denotes
the closure of 4 in X.

Proof. We prove the third one, as the other re-
sults follow similarly. Since A is closed, F.(4) is
meaningful and is closed in (Y,T'). As A is con-
nected, A is also connected. If F,(4) is not con-
nected, then there exist nonempty disjoint sets € and
D, closed in F.(A) such that F.(A) = CuUD. As
F.(A) is closed in Y, C and D are closed in Y also.
So we get

A=F'(F(A) = (O VF (D)

which implies that A is not connected. This is a con-
tradiction to the fact that A is connected. This com-
pletes the proof.

TOPOMORPHISMS AND BASES
FOR TOPOLOGIES

In this section we discuss topomorphism in
the context of basis for a topology.

Theorem 6.1. Let F: (X,T) — (Y,T") be a
topomorphism and B be a basis for 7. Then 8’ =
F(B) is a basis for ' where F(B) = { F(B)/

B € B}.
Proof. Since Uge g B = X, we have

F(Ugeg B) = F(X)
and hence
UBE‘BF(B) = UB,E%, B’ = Y

Suppose that y € F(B;) N F(B,).Then C =
F(B;) N F(B,)isanopensetin (Y,T') and hence
F~1(C)isanopensetin (X,T). Thus

F_I(C) = Ugea Ba
for some indexing set A. This implies that
C= F(UaEA Ba) = Ugea F(Ba)-
Therefore y € F(B,,) for some a,. Hence
y € F(By, ) € C = F(By) NF(By).

If V is an open set in (Y, T"), then F~1(V) is
open in (X,7) and hence F~1(V) =U B,. This im-
pliesthat V = F(U B,) =U F(B,). Thus F(B) isa
basis for 7. O
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Theorem 6.2. Let X and Y be nonempty sets,
and let B and B' be bases for topologies 7 and 7’
on X and Y respectively. Let F be a function from 8B
onto B’ having the following properties.

(1) If ByN By S Ugeyp By , then F(B;)N
F(BZ) c UaEA F(B(x)-

(2) IfF(B) S Ugeq F(By), then B S Uyeq B,
Then F can be extended to a topomorphism

from T to T’ uniquely.
Proof. We first note that (1) implies that

3 If BCUgepB, , then F(B) <
UaEA F(Ba)-
4) If B € B, ,then F(B;) € F(B,).

Define G: T — T as follows:
G(V)=UF(B,)
where V =U B, .
We first claim that G is well defined. Suppose
Ugen Ba = Upep’ Bg. Since By S Upgcyr Bg, by Us-
ing (3) we have
F(Bg) Ugen’ F(BB)
and hence
Ugen F(Bg) S Upgey’ F(Bg)
Similarly we get
Ugen'! F(BB) C Ugen F(Bg)
and hence
Ugen F(Bg) = Ugen’ F(Bg)
This shows that G is well defined.
Now we claim that G is a topomorphism. Let
{V,}xeabe a collection of open sets in (X, 7). Let
Vo = Ulea, By
Then
G(UaEA Va) = G(UaEA U/lEAa Ba,l)

— Ugen UAEAa F(Ba,l)
= Ugea G(Va)-

Now let A = Ugep By and B = Ugcyr Bg. Then

GA)NG(B) = (Ugen F(B) N (Ugen' F(Bp))

= UaeaYpen' (F(Ba’) n F(BB))
c UaEAUﬁEA’ (UyEFa,B F(Ba,ﬁ,y))
where

B, N Bﬁ = UVEFaJB B“’B Yy
=G(ANB)

sinceANB = UgenUgen’Uyer,, Baig oy

By using (4), we see that for A,B € T, if A <
B, then G(A) € G(B). Since ANB € A, we have
G(ANB) S G(A); similarly we have G(ANB) <
G(B). Thus G(ANnB) <€ G(A) n G(B) and hence
we have G(AN B) = G(A) n G(B).

Let W € T'. Since B’ is a basis for 7' we
have W =Ugeca B, for some subcollection {Bg}qen
of T'. Since F is onto, for all « € A, there exists,
B, such that B, = F(B,). If V =Ugep B, , then
G(V) =W.Thus G is onto.

To prove G is one-to-one, let V;,V, €T and
G(Vy) = G(V,). Let

V1 = UaEA Ba and Vz :U,BEA’ Bﬁ
For a € A,

F(Ba) SUgen F(Ba) =G6(V) =6WVy)
= UﬁeAl F(Bﬁ) .

Thus by (2), By S Ugepr Bg and hence V; <
V,. Similarly V, € V; and hence V; =V, which
implies that G is one-to-one. Thus G is a topomor-
phism.

To prove the uniqueness let G’ be a topomor-
phismandV = U B, € T, then

G'(V) = G'(UBg) =UG'(By) = U F(By)
=G(V).

This implies that the extension is unique. m

It is easy to see that if the condition ““onto" on
F is removed from the statement, then (X, 7) will
be topomorphic to a subspace of (Y,T") which is
formed by taking the union U F(B) of all sets B €
B.

CONCLUSION

We have defined and discussed a new concept
called topomorphism, as a bijection between topolo-
gies which preserve finite intersection and arbitrary
union. Topomorphisms in the context of connected-
ness, compactness, separation axioms and the role of
basis in topomorphism were studied deeply. A good
theory may be developed by relaxing the condition
"bijection™ in the definition of topomorphism. Fur-
ther, a similar theory can be developed in the fuzzy
topology theory. Topomorphism do not identify dis-
crete topological spaces on finite sets. A parallel the-
ory may be developed in this context.
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TOIIOMOP®U3MMU - HOB ITPUCTAII KOH HIEHTUP®PUKYBAILE HA TOINIOJIOT'UA
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Bo 0Boj TpyZ € BOBeieH M TUCKYTHPaH HOB KOHIICTIT HapedeH TormoMopdm3am. Tormomopduszam ce nedpuHmpa
Kako Ouekuuja Mely TONOJOTMM KoOja 3ama3yBa KOHEYHHM Ipeceld M IPOM3BOJIHM YHHMH. JlokaxkaHo e jeka
TOMOMOp(HU3MHUTE 3ama3yBaaT CBP3aHOCT M KOMIIAaKTHOCT. McTpakyBaHM ce TOMOMOpP(HM3MUTE BO KOHTEKCT Ha
AKCHOMHTE 32 OJJIeTyBambe, KaKo M yJjorara Ha 0a3u 3a TOIOMOp(hHU3MHU.

Kayuynu 300opoBu: Tomosoruja; xomeomopduszam; Tonomopdusam; HAESHTU(PHUKALMja Ha TOIOJOTHH;
CBP3aHOCT; KOMITAaKTHOCT; aKCHOMH 32 OJIJICITyBakhe
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