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A new concept called topomorphism is defined and discussed in this paper. A topomorphism is defined as a 

bijection between topologies which preserve finite intersection and arbitrary union. It is proved that topomorphisms 
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INTRODUCTION 
 

Let us start with the topological spaces (𝑋, 𝒯) 

and (𝑌, 𝒯′)  where  𝑋 = {1, 2, 3, … , 10} , Y =
{1, 2, 3, … , 20} , 𝒯 = {𝑋, ∅, {1,2,3}}  and 𝒯′ =
{𝑌, ∅, {1,2,3,4,5,6}}. These two topological spaces 

are not homeomorphic as there is no bijection be-

tween 𝑋  and 𝑌 . But one can feel that these two 

spaces are the same in some sense. This feeling mo-

tivates us to define the concept of topomorphism. A 

topomorphism from a topological space (𝑋, 𝒯) to a 

topological space (𝑌, 𝒯′)  is defined as a bijection 

from 𝒯 to 𝒯′ preserving finite intersection and arbi-

trary union. In this paper we define and discuss the 

concept of topomorphism. 

In Section 2 we give all the definitions and no-

tations which we use in this paper, in Section 3 we 

define topomorphism and investigate certain proper-

ties, in Section 4 we study the relationship between 

topomorphism and homeomorphism, in Section 5 

we discuss the concepts of compact subsets and con-

nected subsets of a topological space in the context 

of topomorphism and in Section 6 we discuss topo-

morphism in the context of bases for topologies; fi-

nally we end the paper with a few concluding re-

marks motivating further research in this area. 

 

 

DEFINITIONS AND RESULTS 
 

First we fix the notations. Let ℝ denote the set 

of real numbers, ∅ denote the empty set. We use the 

notation 𝐸𝑐  to denote the complement of  𝐸 in the 

corresponding space unless there is no ambiguity. 

For sets 𝐴 and 𝐵, by 𝐴 − 𝐵 we denote the set 𝐴 ∩
𝐵𝑐. If 𝐹: 𝒯 → 𝒯′ is a bijection, then for 𝐵 ∈ 𝒯′, by 

𝐹−1(𝐵) we denote the unique element 𝐴 ∈ 𝒯 such 

that 𝐹(𝐴) = 𝐵. For any function 𝑓: 𝑋 → 𝑌, if 𝐴 ⊆
𝑋 and 𝐵 ⊆ 𝑌, by 𝑓→(𝐴) and 𝑓← (𝐵) we denote the 

sets {𝑓(𝑎)/𝑎 ∈ 𝐴}  and {𝑎 ∈ 𝐴/𝑓(𝑎) ∈ 𝐵 }  respec-

tively. These sets are usually denoted by 𝑓(𝐴) and 

𝑓−1(B); if 𝐹 and 𝑓  are a topomorphism and a home-

omorphism from (𝑋, 𝒯) to (𝑌, 𝒯′), to avoid confu-

sions (for example  between 𝐹(𝐴), the image of the 

element 𝐴 in 𝒯  and 𝑓(𝐴), the set of all images of 

points in 𝐴) we use these notations.  

A bijective open continuous function from a 

topological space to a topological space is called a 

homeomorphism. For terminologies and notations 

used in this paper which are not mentioned here we 

refer to [1]. However it is worthwhile to state that we 

assume one point sets are closed in regular spaces 

and normal spaces.  
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Topomorphism 
 

We start with the definition of a topomor-

phism.  

Definition 3.1. Let (𝑋, 𝒯) and (𝑌, 𝒯′) be top-

ological spaces. A bijective function 𝐹: 𝒯 → 𝒯′  is 

said to be a topomorphism from (𝑋, 𝒯) and (𝑌, 𝒯′) 

if 

i. 𝐹(∪ 𝐴𝛼) = ∪ 𝐹(𝐴𝛼) for any collection 

{𝐴𝛼} of elements of 𝒯.  

ii. 𝐹(𝐴 ∩ 𝐵) = 𝐹(𝐴) ∩ 𝐹(𝐵) for any ele-

ments 𝐴 and 𝐵 of 𝒯.  

If there is a topomorphism from (𝑋, 𝒯)  to 

(𝑌, 𝒯′), we say, as usual, (𝑌, 𝒯′) is topomorphic to 

(𝑋, 𝒯). 

Example 3.2. On ℝ, consider the topologies 

𝒯1 = {∅, ℝ, (0,1), (0,2)}, 𝒯2 = {∅, ℝ, {3}, {3,4}}  
and 𝒯3 = {∅, ℝ, (−∞, 0], (0, ∞)} . The mapping 

𝐹: 𝒯1 →  𝒯2 , taking the sets ∅, ℝ, (0,1), (0,2)  to 

∅, ℝ, {3}, {3,4}  respectively, is a topomorphism 

whereas there is no topomorphism from 𝒯1 to 𝒯3.  

Theorem 3.3. Let (𝑋, 𝒯) and (𝑌, 𝒯′) be topo-

logical spaces and let 𝐹: 𝒯 → 𝒯′  be a topomor-

phism. Then  

i. For 𝐴, 𝐵 ∈ 𝒯 , if 𝐴 ⊆ 𝐵 , then 𝐹(𝐴) ⊆
𝐹(𝐵) and if  𝐴 is strictly contained in 𝐵, then 𝐹(𝐴) 

is strictly contained in 𝐹(𝐵). 
ii. 𝐹(𝑋) = 𝑌 and 𝐹(∅) = ∅. 
Proof. Let 𝐴 ⊆ 𝐵. Then 𝐴 ∪ 𝐵 = 𝐵  and 

hence 𝐹(𝐴 ∪ 𝐵) = 𝐹(𝐵) which implies that 𝐹(𝐴) ∪
𝐹(𝐵) = 𝐹(𝐵); hence 𝐹(𝐴) ⊆ 𝐹(𝐵). This proves the 

first part of (i); as 𝐹 is a bijection, the second part of 

(i) follows.  
Let 𝑈 = 𝐹−1(Y). Then 𝐹(𝑈) = 𝑌. As 𝑈 ⊆ 𝑋, 

𝐹(𝑈) ⊆ 𝐹(𝑋)  and hence 𝐹(𝑋) = 𝑌 . Simi-

larly𝐹(∅) = ∅.             □ 

Theorem 3.4. The composition of topomor-

phisms is a topomorphism and the inverse of a topo-

morphism is a topomorphism. 

Proof. Let 𝐹1: (𝑋1, 𝒯1) → (𝑋2, 𝒯2)  and 

𝐹2: (𝑋2, 𝒯2) → (𝑋3, 𝒯3)  be topomorphisms. Let the 

composition 𝐹2 ∘ 𝐹1: (𝑋1, 𝒯1) → (𝑋3, 𝒯3)  be de-

noted by 𝐹.  As 𝐹1 and 𝐹2 are bijections, 𝐹 is also a 

bijection. Let {𝐴𝛼}  be a collection of elements of 𝒯1. 

Now  

𝐹(∪ 𝐴𝛼) = 𝐹2(𝐹1(∪ 𝐴𝛼)) = 𝐹2(∪ 𝐹1(𝐴𝛼)) 

=∪  𝐹2(𝐹1(𝐴𝛼)) =∪  𝐹(𝐴𝛼) 

and similarly  

𝐹(𝐴 ∩ 𝐵) =  𝐹(𝐴) ∩ 𝐹(𝐵). 

Thus 𝐹  is a topomorphism. 

To prove the second part, let 𝐹: (𝑋, 𝒯) →
 (𝑌, 𝒯′) be a topomorphism. As 𝐹 is a bijection, its 

inverse 𝐹−1: (𝑌, 𝒯 ′) →  (𝑋, 𝒯) exists and is a bijec-

tion. Let {𝐵𝛼}  be a collection of elements of 𝒯′. For 

each 𝛼, let 𝐴𝛼 =  𝐹−1(𝐵𝛼). Then 𝐵𝛼 = 𝐹(𝐴𝛼) and 

𝐹(∪ 𝐴𝛼) =∪ 𝐹(𝐴𝛼) . Thus 𝐹(∪ 𝐴𝛼) =∪ 𝐵𝛼  and 

hence ∪ 𝐴𝛼 =  𝐹−1(∪ 𝐵𝛼) which in turn gives  

𝐹−1(∪ 𝐵𝛼) = ∪  𝐹−1(𝐵𝛼). 

Let 𝐵1. 𝐵2 be elements of 𝒯′. For 𝑖 = 1,2, let 

𝐴𝑖 = 𝐹−1(𝐵𝑖) . Then as 𝐹 is a topomorphism, we 

have 𝐹(𝐴1 ∩ 𝐴2) =  𝐹(𝐴1) ∩ 𝐹(𝐴2).  So 𝐹(𝐴1 ∩
𝐴2) = 𝐵1 ∩ 𝐵2 and hence 𝐴1 ∩ 𝐴2 =  𝐹−1(𝐵1 ∩
𝐵2) which implies that  

𝐹−1(𝐵1 ∩ 𝐵2) = 𝐹−1(𝐵1) ∩ 𝐹−1(𝐵2). 

Thus 𝐹−1 is a topomorphism.            □ 

 
It is easy to see that the identity map from 𝒯 

to 𝒯 is a topomorphism and hence by Theorem 3.4, 

the relation ∼ defined on the class of all topological 

spaces by “(𝑋, 𝒯) ∼  (𝑌, 𝒯 ′) if there is a topomor-

phism from (𝑋, 𝒯) to (𝑌, 𝒯 ′) ” is an equivalence re-

lation.   

Theorem 3.5. Let 𝐹: (𝑋, 𝒯) → (𝑌, 𝒯′)  be a 

topomorphism. Then  

i. (𝑋, 𝒯)  is connected if and only if  
(𝑌, 𝒯′)  is connected. 

ii. (𝑋, 𝒯)  is compact if and only if  (𝑌, 𝒯 ′)  

is compact. 

Proof. Let (𝑋, 𝒯)  be connected. Let us as-

sume that (𝑌, 𝒯 ′) is not connected. Then there are 

nonempty sets 𝐵1, 𝐵2 ∈  𝒯′ such that  

𝐵1 ∪ 𝐵2 = 𝑌  and 𝐵1 ∩ 𝐵2 = ∅. 

Let  

𝐴1 =  𝐹−1(𝐵1)  and   𝐴2 =  𝐹−1(𝐵2). 

As 𝐵1  and 𝐵2  are nonempty sets, 𝐴1  and 𝐴2 

are nonempty sets. Now   

𝐹(𝐴1 ∪ 𝐴2) =  𝐹(𝐴1) ∪ 𝐹(𝐴2) =  𝐵1 ∪ 𝐵2 = 𝑌
= 𝐹(𝑋) 

and  

𝐹(𝐴1 ∩ 𝐴2) =  𝐹(𝐴1) ∩ 𝐹(𝐴2) =  𝐵1 ∩ 𝐵2 = ∅
= 𝐹(∅) 

Hence, as 𝐹 is a bijection,   

𝐴1 ∪ 𝐴2 = 𝑋 and 𝐴1 ∩ 𝐴2 = ∅ 

This is a contradiction proving a part of (i).  

Let (𝑋, 𝒯)  be compact. Let {𝐵𝛼} be an open 

cover for  𝑌. Let 𝐴𝛼 =  𝐹−1(𝐵𝛼). Then  
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𝐹(∪ 𝐴𝛼) = ∪ 𝐹(𝐴𝛼) = ∪ 𝐵𝛼 = 𝑌 = 𝐹(𝑋). 

and hence ∪ 𝐴𝛼 = 𝑋 . Thus {𝐴𝛼} is an open cover 

for 𝑋. As 𝑋 is compact, this open cover has a finite 

subcover, say {𝐴1, 𝐴2, … , 𝐴𝑛}.  Then {𝐵1, 𝐵2, … , 𝐵𝑛} 

is a finite subcover of {𝐵𝛼} proving a part of (ii). 

Since  𝐹−1 is also a topomorphism, converse parts 

follow.               □ 

 

Topomorphisms and Homeomorphisms 
 

Let us now see a relation between topomor-

phism and homeomorphism.  

Definition 4.1. Let 𝑓: (𝑋, 𝒯) → (𝑌, 𝒯′)  be a 

homeomorphism. Let 𝐹: 𝒯 → 𝒯 ′ be defined as  

𝐹(𝐴) = 𝑓→(𝐴). 

Then 𝐹 is a topomorphism and is called the 

topomorphism induced by the homeomorphism 𝑓. 

As a homeomorphism takes open sets to open 

sets, the function 𝐹 is well defined; since 𝑓 is a bi-

jection and 𝑓←(𝐵) is open in 𝑋 whenever 𝐵 is open 

in 𝑌, we see that 𝐹  is a bijection. Now  

𝐹(∪ 𝐴𝛼) =  𝑓→(∪ 𝐴𝛼) = ∪ 𝑓→(𝐴𝛼) = ∪ 𝐹(𝐴𝛼) 

and  

𝐹(𝐴 ∩ 𝐵) =  𝑓→(𝐴 ∩ 𝐵) =  𝑓→(𝐴) ∩  𝑓→(𝐵) 

= 𝐹(𝐴) ∩ 𝐹(𝐵).  

Thus Definition 4.1 is well-defined.  

Though every homeomorphism induces a to-

pomorphism, not all topomorphisms are induced by 

homeomorphisms, even if the two topological 

spaces have the same cardinality; the topomorphism 

𝐹  of Example 3.2 is not induced by any homeo-

morphism as 𝑓←({3})  cannot be an uncountable set 

under any bijection. Thus the concept of topomor-

phism is a proper generalization of homeomorphism.  

Topomorphism will not preserve the separa-

tion properties like Hausdorff and regular as seen in 

the following example. 

Example 4.2.  

Let 𝑋 = {1,2}, 𝒯 = {∅, 𝑋, {1}, {2}}, 𝑌 = ℝ  
and 𝒯 ′ = {∅, ℝ, (−∞, 0], (0, ∞)} . Then (𝑋, 𝒯)  and 

(𝑌, 𝒯′) are topomorphic, (𝑋, 𝒯) is Hausdorff, regu-

lar and normal whereas (𝑌, 𝒯 ′)  is not even a 

Hausdorff space. 

But if one point sets are closed in one of the 

two spaces between which a topomorphism exists, 

then we get interesting properties. 

Theorem 4.3 Let 𝐹: (𝑋, 𝒯) → (𝑌, 𝒯′) be a to-

pomorphism and let one point sets in (𝑋, 𝒯)  be 

closed. Then (𝑋, 𝒯)  is homeomorphic to a subspace 

of (𝑌, 𝒯 ′).  

Proof. Define a function 𝑓: 𝑋 → 𝑌 as follows: 

For any 𝑎 ∈ 𝑋, as {𝑎} is closed in (𝑋, 𝒯), 𝑋 −
{𝑎} ∈ 𝒯 . As 𝑋 − {𝑎}  ⫋ 𝑋,  𝐹(𝑋 − {𝑎}) ⫋ 𝐹(𝑋). 
Choose an element in 𝑦 ∉ 𝐹(𝑋 − {𝑎}) and declare it 

as 𝑓(𝑎). (This is possible by the axiom of choice.) 

We first prove that 𝐹(𝑋 − {𝑎})is the largest 

open set not containing 𝑓(𝑎). There is no open set 

strictly between 𝑋 − {𝑎} and 𝑋. Hence, by Theorem 

3.3, there is no open set strictly between 𝐹(𝑋 − {𝑎}) 

and 𝐹(𝑋) . As 𝐹(𝑋) = 𝑌 , 𝐹(𝑋)  contains 𝑓(𝑎) . 

Hence 𝐹(𝑋 − {𝑎})  is not contained in any larger 

open set not containing 𝑓(𝑎). Furthermore the union 

of all open sets not containing 𝑓(𝑎)  (say 𝑉𝑎  ) is 

clearly the largest open set not containing 𝑓(𝑎). But 

then 𝐹(𝑋 − {𝑎}) ⊆ 𝑉𝑎  and hence 𝐹(𝑋 − {𝑎}) = 𝑉𝑎 . 

Thus 𝐹(𝑋 − {𝑎}) is the largest open set not contain-

ing 𝑓(𝑎).  

We now prove that 𝑓  is one-to-one. Let 

𝑎1, 𝑎2 ∈ 𝑋  be such that 𝑎1 ≠ 𝑎2 . Let 𝑉1 = 𝐹(𝑋 −
{𝑎1})  and 𝑉2 = 𝐹(𝑋 − {𝑎2}) . By definition 

𝑓(𝑎1)  ∉ V1. We claim that 𝑓(𝑎1) ∈ 𝑉2. If 𝑓(𝑎1)  ∉
V2, then 𝑉1 ∪ 𝑉2  ⫋ 𝑌; hence  

𝐹(𝑋) = 𝐹((𝑋 − {𝑎1}) ∪ (𝑋 − {𝑎2}) 

=  𝐹(𝑋 − {𝑎1}) ∪ 𝐹(𝑋 − {𝑎2}) = 𝑉1 ∪ 𝑉2  ⫋ 𝑌. 
This is a contradiction to the fact that 𝐹(𝑋) =

𝑌.  So 𝑓(𝑎1) ∈ 𝑉2 . But 𝑓(𝑎2)  ∉ V2.  Thus 𝑓(𝑎1) ≠
𝑓(𝑎2) and hence 𝑓 is one-to-one.  

Now let  

𝑌∗ = {𝑓(𝑎)/𝑎 ∈ 𝑋}. 

Then 𝑌∗ is a subset of 𝑌 and 𝑓 is a bijection 

from 𝑋 to 𝑌∗. Let 

𝒯∗ =  {𝑓→(𝑈)/ 𝑈 ∈ 𝒯}. 

We now prove that 𝒯∗ =  {𝑉 ∩ 𝑌∗/ 𝑉 ∈ 𝒯′} 

which will imply that (𝑌∗, 𝒯∗)  is a subspace of 

(𝑌, 𝒯).  

Let 𝑊 ∈ 𝒯∗. Then 𝑊 = 𝑓→(𝑈)  for some 

𝑈 ∈ 𝒯. Since 𝑓 is a bijection, 𝑈 is unique. We claim 

that 𝑊 = 𝐹(𝑈) ∩ 𝑌∗.  Let 𝑏 ∈ 𝑊 . Then 𝑏 =
𝑓(𝑎) for some  𝑎 ∈ 𝑈. Suppose that 𝑓(𝑎)  ∉ 𝐹(U). 

Since 𝐹(𝑋 − {𝑎})  is the largest open subset of 𝑌 not 

containing 𝑓(𝑎)  and 𝐹(𝑈)  is an open subset of 

 𝑌 not containing 𝑓(𝑎)  we have 𝐹(𝑈) ⊆ 𝐹(𝑋 −
{𝑎}) and hence 𝑈 ⊆ 𝑋 − {𝑎}. This is a contradiction 

to the fact that 𝑎 ∈ 𝑈. Thus 𝑓(𝑎) ∈ 𝐹(𝑈) and hence 

𝑏 ∈ 𝐹(𝑈). This proves that  

𝑊 ⊆ 𝐹(𝑈) ∩ 𝑌∗. 

To prove the reverse inclusion, let 𝑏 ∈
𝐹(𝑈) ∩ 𝑌∗ . Then 𝑏 = 𝑓(𝑎)  for some 𝑎 ∈ 𝑋 . We 

claim that 𝑎 ∈ 𝑈 . Suppose that 𝑎 ∉ 𝑈 . Then  𝑈 ⊆
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𝑋 − {𝑎} and hence 𝐹(𝑈) ⊆ 𝐹(𝑋 − {𝑎}). As 𝑓(𝑎) is 

in 𝐹(𝑈)  and as 𝑓(𝑎) cannot be in 𝐹(𝑋 − {𝑎})  we 

get a contradiction. Thus 𝑎 ∈ 𝑈 and hence 𝑓(𝑎) ∈
𝑓→(𝑈) . Thus 𝑏 ∈ 𝑓→(𝑈)  and hence 𝑏 ∈ 𝑊.  This 

implies that 𝐹(𝑈) ∩ 𝑌∗ ⊆ 𝑊  and hence we get  

𝑊 = 𝐹(𝑈) ∩ 𝑌∗.  

So every member of 𝒯∗ is of the form 𝑉 ∩ 𝑌∗  
for some 𝑉 ∈ 𝒯 ′. We shall now prove that every set 

of the from 𝑉 ∩ 𝑌∗ for some 𝑉 ∈  𝒯 ′  is in  𝒯∗.  

Let 𝑉 ∈ 𝒯′ and let 𝑊 = 𝑉 ∩ 𝑌∗. As 𝐹 is sur-

jective, 𝑉 = 𝐹(𝑈) for some 𝑈 ∈ 𝒯 . We claim that 

𝐹→(𝑈) = 𝑊 . Let 𝑏 ∈ 𝑓→(𝑈). Then 𝑏 = 𝑓(𝑎)  for 

some 𝑎 ∈ 𝑈. Suppose that 𝑓(𝑎)  ∉ 𝑊. Since 𝑓(𝑎) ∈
𝑌∗  we have 𝑓(𝑎) ∉ 𝑉 = 𝐹(𝑈). But, as 𝐹(𝑋 − {𝑎}) 

is the largest open set not containing 𝑓(𝑎), we see 

that 𝐹(𝑈) ⊆ 𝐹(𝑋 − {𝑎})  and hence 𝑈 ⊆ 𝑋 − {𝑎} . 

This implies that  𝑎 ∉ 𝑈. This is a contradiction to 

the fact that 𝑎 ∈ 𝑈. So 𝑏 = 𝑓(𝑎) ∈ 𝑊  and hence  

𝑓→(𝑈) ⊆ 𝑊.   

To prove the reverse inclusion, let 𝑏 ∈ 𝑊 . 

Then 𝑏 ∈ 𝑉 ∩ 𝑌∗. So 𝑏 = 𝑓(𝑎) for some  𝑎 ∈ 𝑋. As 

𝑏 ∈ 𝑉 , 𝑓(𝑎) ∈  𝑉  and hence 𝑓(𝑎) ∈ 𝐹(𝑈).  We 

claim that 𝑎 ∈ 𝑈. Let us assume that 𝑎 ∉ 𝑈. Then 

𝑈 ⊆ 𝑋 − {𝑎}  and hence 𝐹(𝑈) ⊆ 𝐹(𝑋 − {𝑎}). But 

as 𝑓(𝑎) ∉ 𝐹(𝑋 − {𝑎}), 𝑓(𝑎) ∉ 𝐹(𝑈). This is a con-

tradiction to the fact that 𝑓(𝑎) ∈ 𝐹(𝑈). This proves 

that 𝑎 ∈ 𝑈  and hence 𝑏 = 𝑓(𝑎) ∈ 𝑓→(𝑈).  This 

shows that  

𝑊 ⊆ 𝑓→(𝑈).  

Therefore, 𝑓→(𝑈) = 𝑊 which proves that  

𝒯∗ = {𝑉 ∩ 𝑌∗ / 𝑉 ∈  𝒯 ′ } 

and hence (𝑌∗, 𝒯∗)  is a subspace of (𝑌, 𝒯 ′).  
In the above discussion we have proved that, 

for all 𝑈 ∈ 𝒯,  

𝑓→(𝑈) =  𝐹(𝑈) ∩ 𝑌∗. 

Finally we prove that 𝑓is a homeomorphism 

from (𝑋, 𝒯) to (𝑌∗, 𝒯∗). As 𝑓  is a bijection, it re-

mains to prove that 𝑓 is continuous and it is an open 

mapping. Let 𝑊 ∈ 𝒯∗. Then 𝑊 = 𝑉 ∩ 𝑌∗  for some 

𝑉 ∈ 𝒯 ′. Since 𝑉 = 𝐹(𝑈) for some 𝑈 ∈ 𝒯, we have 

𝑊 = 𝐹(𝑈) ∩ 𝑌∗  for some 𝑈 . So we have 𝑊 =
𝑓→(𝑈). This implies that 𝑈 = 𝑓←(𝑊) as 𝑓 is a bi-

jection. This shows that 𝑓 is continuous. If 𝑈 ∈ 𝒯, 

then 𝑓→(𝑈) = 𝐹(𝑈) ∩ 𝑌∗ ∈ 𝒯∗. This shows that 𝑓 

is an open mapping. So 𝑓 is a homeomorphism from 
(𝑋, 𝒯) to (𝑌∗, 𝒯∗).  

It is interesting to note that for any 𝑎 ∈ 𝑋 , 

𝑓(𝑎)  ∉ 𝐹(𝑋 − {𝑎})  and 𝑓(𝑎) ∈ 𝐹(𝑋 − {𝑏}) for all 

𝑏 ∈ 𝑋 other than 𝑎. The above theorem can be re-

stated as follows: 

Theorem 4.4. If two spaces are topomorphic 

and one point sets in one of the spaces are closed, 

then the other space contains a subspace homeo-

morphic to the first space.  

Furthermore, if 𝐹: (𝑋, 𝒯) → (𝑌, 𝒯 ′) is a topo-

morphism and if (𝑋, 𝒯) is Hausdorff, then, as one 

point sets in a Hausdorff space are closed, 𝑌contains 

a Hausdorff subspace homeomorphic to (𝑋, 𝒯). The 

same is true for all topological properties like regular 

space and normal space.  

As every space is a subspace of itself, the as-

sumption “one point sets are closed" is not a neces-

sary condition in the above theorem. However, the 

importance of the assumption can be seen from the 

following example. 

Example 4.5. Let 𝑋 = 𝑌 = ℝ. Let  

𝒯𝑋 = {∅, [0,1], [0,2], {3}, [0,1] ∪ {3}, [0,2]
∪ {3}, ℝ} 

and  

𝒯𝑌 = {∅, {1}, {1,2}, [3,4], [3,4] ∪ {1}, [3,4]
∪ {1,2}, ℝ}. 

Then (𝑋, 𝒯𝑋)  and (𝑌, 𝒯𝑌) are topological 

spaces. They are topomorphic under the mapping 

which takes the sets of 𝒯𝑋  to sets of  𝒯𝑌 in the order 

we listed them above. But there is neither a subspace 

of 𝑌  homeomorphic to 𝑋 nor a subspace of 𝑋  ho-

meomorphic to 𝑌.  

Let us justify our claim in the example. If pos-

sible let (𝐴, 𝒯𝐴)  be a subspace of 𝑌 homeomorphic 

to (𝑋, 𝒯𝑋). As every member of 𝒯𝐴  is of the form 

𝑉 ∩ 𝐴  for some 𝑉 ∈ 𝒯𝑌 , and as cardinality of 𝒯𝑋  

and the cardinality of 𝒯𝐴  must be equal, 𝐴 must con-

tain both 1 and 2; for otherwise the cardinality of 𝒯𝐴 

will be less than that of 𝒯𝑋. Let 𝑉 = [3,4] ∩ 𝐴. Then  

𝒯𝐴 = {∅, {1}, {1,2}, 𝑉, 𝑉 ∪ {1}, 𝑉 ∪ {1,2}, A}. 

There is no homeomorphism between (𝐴, 𝒯𝐴) 

and (𝑋, 𝒯𝑋) because 𝒯𝑋 contains only two finite sub-

sets whereas 𝒯𝐴  contains at least three finite subsets.  

If possible let (𝐵, 𝒯𝐵) be a subspace of 𝑋 ho-

meomorphic to (𝑌, 𝒯𝑌). Then 𝐵 must contain 3. Let 

𝐶 = [0,1] ∩ 𝐵  and 𝐷 = [0,2] ∩ 𝐵. Then  

𝒯𝐵 = {∅, 𝐶, 𝐷, {3}, 𝐶 ∪ {3}, 𝐷 ∪ {3}, 𝐵}. 

If 𝑓  is a homeomorphism from (𝐵, 𝒯𝐵)  to 
(𝑌, 𝒯𝑌) , then 𝑓(3) = 1. As 3 ∉ 𝐶, 3 ∉ 𝐷  and 

𝑓(3) = 1, either 𝐶 ∪ {3}  or 𝐷 ∪ {3}  must be 

mapped onto {1,2}. So one of the sets 𝐶 and 𝐷 must 

contain only one point and that point must be 
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mapped onto 2 under 𝑓. Since 𝐶 ⊆ 𝐷, 𝐷 cannot be 

an one point set. So 𝐶 is an one point set and let 𝐶 =
{𝑐}. So  

𝒯𝐵 = { ∅, {3}, {𝑐}, 𝐷, {3, 𝑐}, 𝐷 ∪ {3}, 𝐵}. 

There is no homeomorphism between (𝐵, 𝒯𝐵) 

and (𝑌, 𝒯𝑌)  because 𝒯𝑌  contains only three finite 

subsets whereas 𝒯𝐵 contains at least four finite sub-

sets. 

Let us consider a converse of Theorem 4.4. If 
(𝑋, 𝒯) and (𝑌, 𝒯 ′) are spaces in which one point sets 

are closed and if each of the spaces has a subspace 

homeomorphic to the other, can we conclude that 

there is a topomorphism between the spaces? We 

cannot conclude so. For example each of the topo-

logical spaces [0,1] and (0,2), with usual topology, 

has uncountably many subspaces homeomorphic to 

the other; but there is no topomorphism between 

them by Theorem 3.5 as one is compact and the other 

is not.  

We now prove that a bijection from 𝑋 to 𝑌 

which coincides with a topomorphism is necessarily 

a homeomorphism. So a bijection between two top-

ological spaces preserving arbitrary union and finite 

intersection of open sets is necessarily a homeo-

morphism. 

Theorem 4.6 Let 𝐹: (𝑋, 𝒯) → (𝑌, 𝒯 ′) be a to-

pomorphism and let 𝑓: 𝑋 → 𝑌  be a bijection such 

that  

(1) 𝐹(𝐴) = 𝑓→(𝐴) for every 𝐴 ∈ 𝒯.                                

Then 𝑓  is a homeomorphism from (𝑋, 𝒯) to 
(𝑌, 𝒯′)  and the topomorphism induced by 𝑓 is 𝐹. 

Proof. We first note that (1) is equivalent to  

(2) for every 𝐴 ∈ 𝒯,  we have 𝑥 ∈ 𝐴 if and only if  

𝑓(𝑥) ∈ 𝐹(𝐴)  
and this equivalent to  

(3) for every 𝐵 ∈ 𝒯′,  we have 𝑦 ∈ 𝐵 if and only if  

𝑓−1(𝑦) ∈ 𝐹−1(𝐵).  
But by using (3), we see that  

(4) 𝐹−1(𝐵) = 𝑓←(𝐵) for every 𝐵 ∈ 𝒯 ′.   
It is easy to see that (1) and (2) prove that 𝑓−1 

and 𝑓 are continuous as 𝐹(𝐴) and 𝐹−1(𝐵) are open 

sets in 𝒯′ and 𝒯. Thus 𝑓 is a homeomorphism.         □ 
 

Compactness and Connectedness  

in the Context of Topomorphisms 

 
Let (𝑋, 𝒯)and (𝑌, 𝒯′) be topological spaces. 

Let 𝒞  and 𝒞′ denote the collection of all closed sets 

of (𝑋, 𝒯) and (𝑌, 𝒯′) respectively. With every topo-

morphism let us associate a function 𝐹𝑐 from 𝒞 to 𝒞′ 
and study its properties.  

Theorem 5.1. Let 𝐹: (𝑋, 𝒯) → (𝑌, 𝒯 ′)  be a 

topomorphism. Define 𝐹𝑐: 𝒞 → 𝒞′ as follows:  

𝐹𝑐(𝐴) = [𝐹(𝐴𝑐)]𝑐 

where 𝐴𝑐 = 𝑋 − 𝐴. 𝑇ℎ𝑒𝑛  
1. 𝐹𝑐(𝐴 ∪ 𝐵) = 𝐹𝑐(𝐴) ∪ 𝐹𝑐(𝐵)  for any sets 

𝐴 𝑎𝑛𝑑 B in 𝒞. 
2. 𝐹𝑐(∩ 𝐴𝛼) =∩ 𝐹𝑐(𝐴𝛼)  for any collection 

{𝐴𝛼} of sets in 𝒞. 
3. 𝐹𝑐  is a bijection from 𝒞 𝑡𝑜  𝒞′  with inverse 

𝐹𝑐
−1 defined by  

𝐹𝑐
−1(𝐵) = [𝐹−1(𝐵𝑐)]𝑐 . 

4. i) 𝐹𝑐(∅) = ∅ and 𝐹𝑐(𝑋) = 𝑌.   
ii) If 𝐴 ⊆ 𝐵 ⊆ 𝑋, then 𝐹𝑐(𝐴) ⊆ 𝐹𝑐(𝐵); if 𝐴 ⫋

𝐵 ⊆ 𝑋,  then 𝐹𝑐(𝐴) ⫋ 𝐹𝑐(𝐵).  
iii) If 𝐴 ⊆ 𝐵 ⊆ 𝑌, then 𝐹𝑐

−1(𝐴) ⊆ 𝐹𝑐
−1(𝐵); if 

𝐴 ⫋ 𝐵 ⊆ 𝑌,  then 𝐹𝑐
−1(𝐴) ⫋ 𝐹𝑐

−1(𝐵).  
5. i)   𝐹𝑐

−1(𝐴 ∪ 𝐵) = 𝐹𝑐
−1(𝐴) ∪ 𝐹𝑐

−1(𝐵) for any 

sets 𝐴 and 𝐵 in 𝒞′. 
ii) 𝐹𝑐

−1(∩ 𝐵𝛼) =∩ 𝐹𝑐
−1(𝐵𝛼)  for any collec-

tion {𝐵𝛼} of sets in 𝒞′. 
6. i) If 𝐴 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑛𝑑 𝐵 is open in (𝑋, 𝒯) with 

𝐴 ⊆ 𝐵, then 𝐹𝑐(𝐴) ⊆ 𝐹(𝐵).  
ii) If 𝐴 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑎𝑛𝑑 𝐵  is closed in (𝑋, 𝒯) 

with 𝐴 ⊆ 𝐵, then 𝐹(𝐴) ⊆ 𝐹𝑐(𝐵).  
iii) If 𝐴 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑛𝑑 𝐵  is open in (𝑌, 𝒯′) 

with 𝐴 ⊆ 𝐵, then 𝐹𝑐
−1(𝐴) ⊆ 𝐹−1(𝐵). 

iv) If 𝐴 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑎𝑛𝑑 𝐵  is closed in (𝑌, 𝒯′) 

with 𝐴 ⊆ 𝐵, then 𝐹−1(𝐴) ⊆ 𝐹𝑐
−1(𝐵). 

Proof.   

𝐹𝑐(𝐴 ∪ 𝐵) = [𝐹((𝐴 ∪ 𝐵)𝑐)]𝑐 = [𝐹(𝐴𝑐 ∩ 𝐵𝑐)]𝑐 

= [𝐹(𝐴𝑐) ∩ 𝐹(𝐵𝑐)]𝑐 

= [𝐹(𝐴𝑐)]𝑐 ∪ [𝐹(𝐵𝑐)]𝑐 = 𝐹𝑐(𝐴) ∪ 𝐹𝑐(𝐵).          

This proves (1); (2) can be proved similarly.  

Let 𝐴 ∈ 𝒞.  

𝐹𝑐
−1(𝐹𝑐(𝐴)) = (𝐹−1[(𝐹𝑐(𝐴))

𝑐
])

𝑐
 

=  (𝐹−1[([𝐹(𝐴𝑐)]𝑐)𝑐])𝑐 

= (𝐹−1[𝐹(𝐴𝑐)])𝑐 = (𝐴𝑐)𝑐 

= 𝐴. 

Similarly for 𝐵 ∈ 𝒞′ , 𝐹𝑐(𝐹𝑐
−1(𝐵)) = 𝐵  and 

hence 𝐹𝑐  is a bijection whose inverse is given by 

𝐹𝑐
−1(𝐵) = [𝐹−1(𝐵𝑐)]𝑐. Thus (3) follows. 

The identities 𝐹𝑐(∅) = ∅  and 𝐹𝑐(𝑋) = 𝑌  fol-

low from the definition.  

If 𝐴 ⊆ 𝐵 ⊆ 𝑋 , then 𝐵𝑐 ⊆ 𝐴𝑐  and hence 

𝐹(𝐵𝑐) ⊆ 𝐹(𝐴𝑐).  This implies that (𝐹(𝐴𝑐))
𝑐

⊆
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 (𝐹(𝐵𝑐))
𝑐
  and hence 𝐹𝑐(𝐴) ⊆ 𝐹𝑐(𝐵). The other re-

sults in (4) follow similarly.  

All results in (5) follow from the definition.  

Let 𝐴  be open and 𝐵  be closed in (𝑋, 𝒯)  and 

let 𝐴 ⊆ 𝐵. Since 𝐴 ⊆ 𝐵, 𝐴 ∩ 𝐵𝑐 = ∅; thus  𝐹(𝐴 ∩
𝐵𝑐) = ∅  and hence 𝐹(𝐴) ∩ 𝐹(𝐵𝑐) = ∅ ; thus 

𝐹(𝐴) ⊆ (𝐹(𝐵𝑐))
𝑐

 and hence 𝐹(𝐴) ⊆ 𝐹𝑐(𝐵). Other 

results in (6) follow similarly.            □ 

Theorem 5.2. Let 𝐹: (𝑋, 𝒯) → (𝑌, 𝒯 ′)  be a 

topomorphism. If 𝐴 is open and closed, then  

𝐹(𝐴) = 𝐹𝑐(𝐴) = (𝐹(𝐴𝑐))
𝑐

= (𝐹𝑐(𝐴𝑐))
𝑐
.  

Proof. Let 𝐵 = 𝐴𝑐 .  Since 𝐴  and 𝐵  are com-

plement to each other, 𝐹(𝐴) and 𝐹(𝐵) are comple-

ment to each other. Thus   

𝐹(𝐴) = (𝐹(𝐵))
𝑐

= (𝐹(𝐴𝑐))
𝑐
.  

Other results follow similarly.  

Theorem 5.3. Let 𝐹: (𝑋, 𝒯) → (𝑌, 𝒯 ′)  be a 

topomorphism. If 𝐴 is a closed compact set in 𝑋,  
then 𝐹𝑐(𝐴) is compact in 𝑌.  

Proof. Since 𝐴  is closed, 𝐹𝑐(𝐴) is meaningful 

and is closed in (𝑌, 𝒯 ′). Let {𝑉𝛼} be an open cover 

for 𝐹𝑐(𝐴).  For all 𝛼  let 𝑈𝛼 = 𝐹−1(𝑉𝛼).  We claim 

that {𝑈𝛼} is a cover for 𝐴. Now  

𝐹𝑐(𝐴) ⊆ ∪ 𝑉𝛼 = ∪ 𝐹(𝑈𝛼) =  𝐹(∪ 𝑈𝛼).  

Thus by (6) of Theorem 5.1,  

𝐹𝑐
−1(𝐹𝑐(𝐴)) ⊆ 𝐹−1(𝐹(∪ 𝑈𝛼)) 

and hence  

𝐴 ⊆∪ 𝑈𝛼 .  

Thus {𝑈𝛼} is an open cover for 𝐴 and hence 

has a finite subcover, say {𝑈1, 𝑈2, … , 𝑈𝑛}. That is   

𝐴 ⊆ 𝑈1 ∪ 𝑈2 ∪ … ∪ 𝑈𝑛. 

Therefore  

                  𝐹𝑐(𝐴) ⊆ 𝐹(𝑈1 ∪ 𝑈2 ∪ … ∪ 𝑈𝑛)
⊆ 𝐹(𝑈1) ∪ 𝐹(𝑈2) ∪ … ∪ 𝐹(𝑈𝑛)
= 𝑉1 ∪ 𝑉2 ∪ … ∪ 𝑉𝑛. 

Thus {𝑉1, 𝑉2, … , 𝑉𝑛}  is a finite subcover for 

𝐹𝑐(𝐴) and hence 𝐹𝑐(𝐴) is compact.          □ 

Corollary 5.4. Let (𝑋, 𝒯)  be a Hausdorff 

space and 𝐹: (𝑋, 𝒯) → (𝑌, 𝒯 ′) be a topomorphism. 

If 𝐴 is a compact subset of  𝑋, then 𝐹𝑐(𝐴) is compact 

in 𝑌. 

Theorem 5.5. Let 𝐹: (𝑋, 𝒯) → (𝑌, 𝒯 ′)  be a 

topomorphism.  

i. If 𝐴 is an open connected subset of  𝑋, 

then 𝐹(𝐴) is a connected subset of 𝑌. 

ii. If 𝐴 is a closed connected subset of 𝑋, 

then 𝐹𝑐(𝐴) is a connected subset of 𝑌. 

iii. If 𝐴  is a connected subset of 𝑋 , then 

𝐹𝑐(�̅�) is a connected subset of  𝑌 where  �̅� denotes 

the closure of 𝐴 𝑖𝑛 X. 

Proof. We prove the third one, as the other re-

sults follow similarly. Since �̅� is closed,  𝐹𝑐(�̅� ) is 

meaningful and is closed in (𝑌, 𝒯′). As 𝐴 is con-

nected,  �̅� is also connected. If 𝐹𝑐(�̅� ) is not con-

nected, then there exist nonempty disjoint sets 𝐶 and 

𝐷 , closed in 𝐹𝑐(�̅�)  such that 𝐹𝑐(𝐴 ̅) = 𝐶 ∪ 𝐷.  As 

𝐹𝑐(𝐴 ̅)  is closed in 𝑌, 𝐶 and 𝐷 are closed in 𝑌 also. 

So we get  

�̅� = 𝐹𝑐
−1(𝐹𝑐(�̅�)) =  𝐹𝑐

−1(𝐶) ∪ 𝐹𝑐
−1(𝐷) 

which implies that �̅� is not connected. This is a con-

tradiction to the fact that �̅� is connected. This com-

pletes the proof.     ……□ 

 

TOPOMORPHISMS AND BASES  

FOR TOPOLOGIES 
 

In this section we discuss topomorphism in 

the context of basis for a topology.  

Theorem 6.1. Let 𝐹: (𝑋, 𝒯) → (𝑌, 𝒯′) be a 

topomorphism and  𝔅 be a basis for 𝒯. Then 𝔅′ =
 𝐹(𝔅) is a basis for 𝒯 ′ where 𝐹(𝔅) = { 𝐹(𝐵)/
 𝐵 ∈  𝔅}.     
Proof. Since ∪𝐵∈ 𝔅 𝐵  =  𝑋, we have 

𝐹(∪𝐵∈ 𝔅  𝐵)   =  𝐹(𝑋)  

and hence 

∪𝐵∈ 𝔅 𝐹(𝐵) = ∪𝐵′∈ 𝔅′ 𝐵′ =  𝑌. 

Suppose that 𝑦 ∈   𝐹(𝐵1) ∩ 𝐹(𝐵2). Then 𝐶 =
𝐹(𝐵1) ∩ 𝐹(𝐵2) is an open set in (𝑌, 𝒯 ′)  and hence 

𝐹−1(𝐶) is an open set in (𝑋, 𝒯).  Thus  

𝐹−1(𝐶) = ∪𝛼∈Λ 𝐵𝛼 

for some indexing set Λ. This implies that  

𝐶 = 𝐹(∪𝛼∈Λ 𝐵𝛼) = ∪𝛼∈Λ 𝐹(𝐵𝛼). 

Therefore 𝑦 ∈ 𝐹(𝐵𝛼0
)  for some 𝛼0. Hence  

𝑦 ∈ 𝐹(𝐵𝛼0 ) ⊆ 𝐶 = 𝐹(𝐵1) ∩ 𝐹(𝐵2). 

If 𝑉 is an open set in (𝑌, 𝒯′), then 𝐹−1(𝑉)  is 

open in (𝑋, 𝒯) and hence 𝐹−1(𝑉) =∪ 𝐵𝛼. This im-

plies that 𝑉 = 𝐹(∪ 𝐵𝛼) = ∪ 𝐹(𝐵𝛼). Thus  𝐹(𝔅) is a 

basis for 𝒯 ′.              □  
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Theorem 6.2. Let 𝑋  and 𝑌 be nonempty sets, 

and let 𝔅 and 𝔅′ be bases for topologies 𝒯 and 𝒯 ′ 

on 𝑋 and 𝑌 respectively. Let 𝐹 be a function from 𝔅 

onto 𝔅′ having the following properties. 

(1) If  𝐵1 ∩ 𝐵2 ⊆  ∪𝛼∈𝛬 𝐵𝛼 , then 𝐹(𝐵1) ∩
 𝐹(𝐵2) ⊆ ∪𝛼∈𝛬 𝐹(𝐵𝛼).   

(2) If 𝐹(𝐵) ⊆  ∪𝛼∈𝛬 𝐹(𝐵𝛼),  then 𝐵 ⊆ ∪𝛼∈𝛬 𝐵𝛼 .   

Then 𝐹  can be extended to a topomorphism 

from 𝒯 to 𝒯′ uniquely.     

Proof.  We first note that (1) implies that  

(3)   If 𝐵 ⊆∪𝛼∈Λ 𝐵𝛼 , then 𝐹(𝐵)  ⊆
∪𝛼∈Λ 𝐹(𝐵𝛼).  

(4)  If 𝐵1 ⊆ 𝐵2 , then 𝐹(𝐵1) ⊆ 𝐹(𝐵2).   

Define 𝐺: 𝒯 →  𝒯 ′ as follows: 

𝐺(𝑉) = ∪ 𝐹(𝐵𝛼) 

where 𝑉 =∪ 𝐵𝛼  . 
We first claim that 𝐺 is well defined. Suppose 

∪𝛼∈Λ 𝐵𝛼 = ∪𝛽∈Λ′ 𝐵𝛽. Since 𝐵𝛼 ⊆ ∪𝛽∈Λ′ 𝐵𝛽, by us-

ing (3) we have  

𝐹(𝐵𝛼) ⊆ ∪𝛽∈Λ′ 𝐹(𝐵𝛽) 

and hence  

∪𝛼∈Λ 𝐹(𝐵𝛼) ⊆ ∪𝛽∈Λ′ 𝐹(𝐵𝛽) 

Similarly we get  

 ∪𝛽∈Λ′ 𝐹(𝐵𝛽) ⊆ ∪𝛼∈Λ 𝐹(𝐵𝛼) 

and hence  

∪𝛼∈Λ 𝐹(𝐵𝛼) = ∪𝛽∈Λ′ 𝐹(𝐵𝛽) 

This shows that 𝐺 is well defined.  

Now we claim that 𝐺  is a topomorphism. Let 
{𝑉𝛼}𝛼∈Λbe a collection of open sets in (𝑋, 𝒯). Let  

𝑉𝛼 = ∪𝜆∈Λ𝛼
𝐵𝛼,𝜆. 

Then  

     𝐺(∪𝛼∈Λ  𝑉𝛼) =  𝐺(∪𝛼∈Λ ∪𝜆∈Λα
 𝐵𝛼,𝜆 )

− ∪𝛼∈Λ ∪𝜆∈Λα
 𝐹(𝐵𝛼,𝜆)

=  ∪𝛼∈Λ  𝐺(𝑉𝛼). 

Now let 𝐴 = ∪𝛼∈Λ 𝐵𝛼 and 𝐵 = ∪𝛽∈Λ′ 𝐵𝛽. Then  

 

𝐺(𝐴) ∩ 𝐺(𝐵) =  (∪𝛼∈Λ 𝐹(𝐵𝛼)) ∩  (∪𝛽∈Λ′  𝐹(𝐵𝛽)) 

                  = ∪𝛼∈Λ∪𝛽∈Λ′  (𝐹(𝐵𝛼) ∩ 𝐹(𝐵𝛽)) 

                  ⊆ ∪𝛼∈Λ∪𝛽∈Λ′  (∪𝛾∈Γα,β 𝐹(𝐵𝛼,𝛽,𝛾))  

where   

𝐵𝛼 ∩ 𝐵𝛽 = ∪𝛾∈Γ𝛼,𝛽 𝐵𝛼 ,𝛽 ,𝛾 

= 𝐺(𝐴 ∩ 𝐵)                      

since 𝐴 ∩ 𝐵 = ∪𝛼∈Λ∪𝛽∈Λ′∪𝛾∈Γ𝛼,𝛽 𝐵𝛼 ,𝛽 ,𝛾 . 

By using (4), we see that for 𝐴, 𝐵 ∈ 𝒯, if 𝐴 ⊆
𝐵, then 𝐺(𝐴) ⊆ 𝐺(𝐵). Since 𝐴 ∩ 𝐵 ⊆ 𝐴, we have 

𝐺(𝐴 ∩ 𝐵) ⊆ 𝐺(𝐴); similarly we have 𝐺(𝐴 ∩ 𝐵) ⊆
𝐺(𝐵) . Thus 𝐺(𝐴 ∩ 𝐵) ⊆ 𝐺(𝐴) ∩ 𝐺(𝐵)  and hence 

we have 𝐺(𝐴 ∩ 𝐵) = 𝐺(𝐴) ∩ 𝐺(𝐵).  

Let 𝑊 ∈ 𝒯 ′ . Since 𝔅′  is a basis for 𝒯 ′  we 

have 𝑊 =∪𝛼∈Λ 𝐵𝛼
′  for some subcollection {𝐵𝛼

′ }𝛼∈Λ 

of 𝒯 ′.  Since 𝐹 is onto, for all 𝛼 ∈ Λ, there exists, 

𝐵𝛼 such that 𝐵𝛼
′ =  𝐹(𝐵𝛼) . If 𝑉 =∪𝛼∈Λ 𝐵𝛼 , then 

𝐺(𝑉) = 𝑊. Thus 𝐺 is onto.  

To prove 𝐺  is one-to-one, let 𝑉1, 𝑉2 ∈ 𝒯  and 

𝐺(𝑉1) = 𝐺(𝑉2). Let  

𝑉1 = ∪𝛼∈Λ 𝐵𝛼 and 𝑉2 =∪𝛽∈Λ′ 𝐵𝛽 . 

For 𝛼 ∈ Λ,  

𝐹(𝐵𝛼) ⊆∪𝛼∈Λ 𝐹(𝐵𝛼) = 𝐺(𝑉1) = 𝐺(𝑉2)
= ∪𝛽∈Λ′ 𝐹(𝐵𝛽) . 

Thus by (2), 𝐵𝛼 ⊆ ∪𝛽∈Λ′ 𝐵𝛽 and hence 𝑉1 ⊆

𝑉2 . Similarly 𝑉2 ⊆ 𝑉1  and hence 𝑉1 = 𝑉2  which 

implies that 𝐺 is one-to-one. Thus 𝐺 is a topomor-

phism.  

To prove the uniqueness let 𝐺′ be a topomor-

phism and 𝑉 = ∪ 𝐵𝛼 ∈ 𝒯, then  

𝐺′(𝑉) =  𝐺′(∪ 𝐵𝛼) = ∪ 𝐺′(𝐵𝛼) = ∪ 𝐹(𝐵𝛼)
= 𝐺(𝑉). 

This implies that the extension is unique.         □ 

It is easy to see that if the condition ``onto" on 

𝐹 is removed from the statement, then (𝑋, 𝒯)  will 

be topomorphic to a subspace of (𝑌, 𝒯 ′) which is 

formed by taking the union ∪ 𝐹(𝐵) of all sets 𝐵 ∈
𝔅.  

 

CONCLUSION 
 

We have defined and discussed a new concept 

called topomorphism, as a bijection between topolo-

gies which preserve finite intersection and arbitrary 

union. Topomorphisms in the context of connected-

ness, compactness, separation axioms and the role of 

basis in topomorphism were studied deeply. A good 

theory may be developed by relaxing the condition 

"bijection" in the definition of topomorphism. Fur-

ther, a similar theory can be developed in the fuzzy 

topology theory. Topomorphism do not identify dis-

crete topological spaces on finite sets. A parallel the-

ory may be developed in this context. 
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