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In this paper we introduce various notions of continuous fuzzy proper functions by using the existing notions of 

fuzzy closure and fuzzy interior operators like 𝑅𝜏
𝑟-closure, 𝑅𝜏

𝑟-interior, etc., and present all possible relations among 

these types of continuities. Next, we introduce the concepts of α-quasi-coincidence, 𝑞𝛼
𝑟 -pre-neighborhood, 𝑞𝛼

𝑟 -pre-clo-

sure and 𝑞𝛼
𝑟 - pre-continuous function in smooth fuzzy topological spaces and investigate the equivalent conditions of 

𝑞𝛼
𝑟 - pre-continuity.  
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INTRODUCTION 
 

Šostak [28] defined I-fuzzy topology as an ex-

tension of Chang’s fuzzy topology [2]. It has been 

developed in many directions by many authors. For 

example see [8, 16]. Ramadan [23] gave a similar 

definition of fuzzy topology on a fuzzy set in 

Šostak’s sense and called by the name "smooth fuzzy 

topological space". 

On the other hand, studying different forms of 

continuous functions in topological space is an inter-

esting area of research which attracts many research-

ers. In the fuzzy context, after the introduction of 

fuzzy proper function from a fuzzy set in to a fuzzy 

set [1], several notions of continuous fuzzy proper 

functions between Chang’s fuzzy topological spaces 

are defined and their properties are discussed in [3]. 

The concepts of smooth fuzzy continuity, weakly 

smooth fuzzy continuity, qn-weakly smooth fuzzy 

continuity, (α,β)-weakly smooth fuzzy continuity of 

a fuzzy proper function on smooth fuzzy topological 

spaces and their inter-relations are investigated in [5, 

23, 26, 27, 10]. 

Lee and Lee [19] introduced the notion of 

fuzzy r-interior which is an extension of Chang’s 

fuzzy interior. Using fuzzy r-interior, they define 

fuzzy r-semiopen sets and fuzzy r-semicontinuous 

maps which generalize fuzzy semiopen sets and 

fuzzy semicontinuous maps in Chang’s fuzzy topol-

ogy, respectively. Some basic properties of fuzzy r-

semiopen sets and fuzzy r-semicontinuous maps are 

investigated in [19]. In [22], the concepts of several 

types of weak smooth compactness are introduced 

and investigated some of their properties. 

In [7, 20], the notions of fuzzy semicontinuity, 

fuzzy γ-continuity of a fuzzy proper functions, fuzzy 

separation axioms, fuzzy connectedness and fuzzy 

compactness are defined. 

Ganguly and Saha [6] introduced the notions of 

δ-cluster points and θ-cluster points in Chang’s fuzzy 

topological spaces. Kim and Park [15] introduced δ-

closure in Šostak’s fuzzy topological spaces. Kim and 

Ko [13] introduced fuzzy super continuity, fuzzy δ-

continuity, fuzzy almost continuity in the context of 

Šostak’s fuzzy topological spaces. They proved that 

fuzzy super continuity implies both fuzzy δ-continu-

ity and fuzzy almost continuity. Similar works are dis-

cussed by various researchers, see [12, 14, 18, 21]. 

By using the existing notions of fuzzy closure 

and fuzzy interior operators, we introduce the con-

cepts of fuzzy weakly δ-continuity, fuzzy weakly δ-

𝑟1 -continuity, fuzzy weakly δ-[r,q]1-continuity, 
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fuzzy weakly δ-𝑟2-continuity, fuzzy weakly δ-[r,q]2-

continuity, fuzzy weakly δ- 𝑟3 -continuity, fuzzy 

weakly δ-𝑟4-continuity, fuzzy almost 𝑟1-continuity, 

fuzzy almost [r,q]1- continuity, fuzzy almost 𝑟2-con-

tinuity, fuzzy almost [r,q]2-continuity, fuzzy almost 

𝑟3 -continuity and fuzzy almost 𝑟4 -continuity and 

discuss the inter-relations among them. 

Further, by introducing the notions α-quasi-

coincidence, 𝑞𝛼
𝑟 -pre-neighborhood, 𝑞𝛼

𝑟 -pre-closure 

and 𝑞𝛼
𝑟 -pre-continuity, we investigate the relations 

between 𝑞𝛼
𝑟 - pre-continuity and the property 

F(P𝐶𝑙𝑎(A, r)) ≤ P𝐶𝑙𝑎(F(A),r), for every A ≤ µ in 

smooth fuzzy topological spaces.  

 

PRELIMINARIES 

 
Let X, S be non-empty sets. We denote by I, 

𝐼0, 𝐼𝑋, 0𝑋, µ and ν respectively the unit interval [0, 

1], the interval [0, 1], the set of all fuzzy subsets of 

X, the zero function on X, a fixed fuzzy subset of X 

and a fixed fuzzy subset of S. For X={𝑥1, 𝑥2, ….., 

𝑥𝑛} and λi
 ∈ I, i ∈ {1,2,…,n}, we denote the fuzzy 

subset µ of X which maps 𝑥𝑖  to λi for every i = 

1,2,…,n by µ
[𝜆1,𝜆2,…,𝜆𝑛]

[𝑥1, 𝑥2,…., 𝑥𝑛]
. A fuzzy point [15] in X is 

defined by𝑃𝑥
𝜆(𝑡) = {0

𝜆     ,𝑖𝑓      𝑡≠𝑥
𝑖𝑓      𝑡=𝑥

where 0 < λ ≤ 1. By 

𝑃𝑥
𝜆 ∈ µ we mean that λ ≤ µ (x).  

 

Definition 1 [23]: A smooth fuzzy topology on a 

fuzzy set µ ∈ 𝐼𝑋  is a map  𝜏 ∶ 𝒥𝜇 = {𝑈 ∈ 𝐼𝑋: 𝑈 ≤

µ} → 𝐼, satisfying the following axioms:  

1. τ(0𝑋) = 𝜏(µ) = 1, 
2. τ(A1Λ A2) ≥ 𝜏(𝐴1)Λτ(𝐴2), ∀ 𝐴1,𝐴2  ∈  𝒥𝜇 , 

3. 𝜏(⋁ 𝐴𝑖)𝑖∈𝛤 ≥ ⋀ 𝜏(𝐴𝑖𝑖∈𝛤 ) for every family 

(𝐴𝑖) ⊆𝑖∈𝛤 𝒥𝜇. 
 

The pair (µ,τ) is called a smooth fuzzy topological 

space.  

A fuzzy subset U ∈ 𝒥𝜇  is said to be fuzzy 

open if τ(U) > 0 and fuzzy closed if τ(µ – U) > 0.  
 

Definition 2 [1]: Let U, V ∈  𝒥𝜇 are said to be quasi-

coincident referred to µ (written as UqV[µ]) if there 

exists x ∈ X such that U(x)+V(x)>µ (x). If U is not 

quasi-coincident with V, then we write, U�̅�V[µ].  
 

A fuzzy set U ∈ 𝒥𝜇  is called a q-neighbor-

hood of a fuzzy point 𝑃𝑥
𝜆 in µ if 𝑃𝑥

𝜆𝑞𝑈[µ] and τ(U) 

> 0.  
 

Definition 3[1]: Let µ ∈ 𝐼𝑋and ν ∈  𝐼𝑆. A non-zero 

fuzzy subset F of X ∈ S is said to be a fuzzy proper 

function from µ to ν if  
 

1. F(x,s) ≤ 𝑚𝑖𝑛{µ(x), ν(s)}, ∀(𝑥, 𝑠) ∈ 𝑋 × 𝑆, 
 

2. for each x ∈ X with µ(x)>0, there exists a unique 

𝑠0  ∈ 𝑆 such that F(x, 𝑠0)= µ(x) and F(x, s) = 0 

if s≠  𝑠0.  
 

Definition 4 [1]: Let F be a fuzzy proper function 

from µ to ν. If U ∈  𝒥𝜇 and V∈  𝒥𝜇, then F(U):S → I 

and F–1(V) : X → 𝐼 are defined by  
 

(F(U))(s)=sup {F(x, s) Λ U (x) : x ∈ 𝑋}, ∀𝑠 ∈ 𝑆, 
  

(F–1(V))(x) = sup {F(x, s) Λ V (s) : s ∈ 𝑆}, ∀𝑥 ∈ 𝑋.
  

The inverse image of a fuzzy subset V under a 

fuzzy proper function F can be easily obtained as (F–

1(V))(x) = µ(x) Λ V(s), where s ∈ S is the unique ele-

ment such that F(x,s)=µ(x).  
 

Definition 5 [5]: A fuzzy proper function F:µ→ ν is 

said to be injective (or one-to-one) if F(x1, s) > 0 and 

F(x2, s) > 0, for some x1, x2 ∈ 𝑋 and s ∈ S, then x1 = 

x2.  
 

Definition 6 [4]: Let (µ, τ) be a smooth fuzzy topo-

logical space. For r ∈  𝐼0, A ∈ 𝒥𝜇,  

• Cτ: 𝒥𝜇 ×  𝐼0  →  𝒥𝜇  is defined by Cτ(A, r) = 

Λ{K ∈ 𝒥𝜇 : A ≤ 𝐾, 𝜏(µ– 𝐾) ≥ 𝑟}, 

• 𝐼𝜏 ∶  𝒥𝜇 × 𝐼0 → 𝒥𝜇 is defined by 𝐼𝜏(𝐴, 𝑟) =

 ⋁  { 𝑆 ∈ 𝒥𝜇: 𝑆 ≤ 𝐴, 𝜏(𝑆) ≥ 𝑟}. 
 

Definition 7 (Cf. [18]): Let (µ,τ) be smooth fuzzy 

topological space, U ∈  𝒥𝜇, and r ∈  𝐼0. Then  

• U is called fuzzy r-preopen if U≤  𝐼𝜏(𝐶𝜏(𝑈, 𝑟), 𝑟),  

• U is called fuzzy r-preclosed if U ≥
 𝐶𝜏(𝐼𝜏(𝑈, 𝑟), 𝑟).  
 

Definition 8 [13]: Let (µ,τ) be a smooth fuzzy topo-

logical space and let A ∈ 𝒥𝜇, r ∈ 𝐼0. Then,  
 

• A is called a 𝑄𝜏
𝑟 -neighborhood of 𝑃𝑥

𝜆  if 

𝑃𝑥
𝜆𝑞𝐴[µ] with τ(A )≥ r,  

• A is called a 𝑅𝜏
𝑟 -neighborhood of 𝑃𝑥

𝜆  if 

𝑃𝑥
𝜆𝑞𝐴[µ]with A = 𝐼𝜏(𝐶𝜏(𝐴, 𝑟), 𝑟). 

 

Definition 9 [11]: Let (µ,τ) be a smooth fuzzy topo-

logical space and let A  ∈ 𝒥𝜇, r ∈ 𝐼0. Then, we de-

fine,  

• Smooth fuzzy 𝑅𝜏
𝑟-closure of A by 

𝔻τ(A, r) =⋁{𝑃𝑥
𝜆 ∈  𝜇 ∶ 𝐶𝜏(𝑈, 𝑟)𝑞𝐴[𝜇], ∀ 𝑅𝜏 

𝑟 – neigh-

borhood U of 𝑃𝑥
𝜆}. 

• Smooth fuzzy 𝑅𝜏 
𝑟 -interior of A by  

𝕀𝜏 (A, r) = ⋁ { 𝐾 ∈  𝒥𝜇 : A ≥  𝐶𝜏(𝐾, 𝑟), 𝐾 =

 𝐼𝜏 (𝐶𝜏(𝐾, 𝑟), 𝑟)}. 
 

Theorem 1 [11]: Let (µ,τ) be a smooth fuzzy topo-

logical space. For A ∈  𝒥𝜇 and r ∈ 𝐼0, then 
 

𝔻𝜏 (𝐴, 𝑟) ⋀{𝐾 ∈  𝒥𝜇: 𝐴 ≤ 𝐼𝜏(𝐾, 𝑟), 𝐾 =

𝐶𝜏(𝐼𝜏(𝐾, 𝑟), 𝑟)}.  
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Definition 10 (Cf. [13]): Let (µ,τ) and (𝜈,σ) be two 

smooth fuzzy topological spaces and F:𝜇 → 𝜈 be a 

fuzzy proper function. Then, F is called fuzzy almost 

continuous or FAC if for every 𝑅𝜎
𝑟-neighborhood V 

of F(𝑃𝑥
𝜆), there exists an 𝑄𝜏

𝑟-neighborhood U of 𝑃𝑥
𝜆 

such that F(U) ≤ V.  
 

Theorem 2 [9]: Let F:𝜇 → 𝜈 be a fuzzy proper func-

tion such that ν = F(𝜇). If F is one-to-one, then F–1(ν 

– V) = 𝜇 − F–1(V), ∀ 𝑉 ∈  𝒥𝜇. 

 

FUZZY WEAKLY 𝛿-CONTINUOUS  

AND FUZZY ALMOST CONTINUOUS 

FUNCTIONS 
 

Definition 11: Let (µ,τ) and (𝜈,σ) be smooth fuzzy 

topological spaces, F:𝜇 → 𝜈be a fuzzy proper func-

tion and r, q ∈  𝐼0 be fixed. Then, F is called  
 

(1) fuzzy weakly 𝛿 -continuous or FW  𝛿 -C if for 

every 𝑅𝜎
𝑟-neighborhood V of F(𝑃𝑥

𝜆), there exists an 

𝑅𝜏
𝑟-neighborhood U of 𝑃𝑥

𝜆 such that F(𝐶𝜏(𝑈, 𝑟))  ≤
𝑉, 

 

(2) fuzzy weakly 𝛿-𝑟1-continuous or FW 𝛿-𝑟1-C if 

F(𝔻τ (A, r))≤ 𝔻𝜎(F(A), r), ∀𝐴 ∈  𝒥𝜇, 
 

(3) fuzzy weakly δ-[r,q]1-continuityor FW δ-[r,q]1-C 

if 

F(𝔻τ (A, r))≤  𝔻𝜎 (F(A), q), ∀𝐴 ∈  𝒥𝜇, 
 

(4) fuzzy weakly 𝛿-𝑟2-continuous or FW 𝛿-𝑟2-C if 

𝔻τ(F
–1(V), r) ≤ F–1(𝔻σ(V,r)), ∀𝑉 ∈ , 

 

(5) fuzzy weakly δ-[r,q]2-continuous or FW δ-[r,q]1-

C if 

𝔻τ(F
–1(V), r) ≤ F–1(𝔻σ(V, q)), ∀𝑉 ∈  𝒥𝜇, 

 

(6) fuzzy weakly 𝛿-𝑟3-continuous or FW 𝛿-𝑟3-C if  

𝔻τ(F
–1(V), r) = F–1(V), ∀𝑉 ∈  𝒥𝜇 with V= 𝔻σ(V,r), 

 

(7) fuzzy weakly 𝛿-𝑟4-continuous or FW 𝛿-𝑟4-C if 

𝔻τ(𝜇 − F–1(V), r) = 𝜇 − F–1(V), ∀𝑉 ∈  𝒥𝜇 with V= 

𝕀σ(V, r). 
 

Theorem 3 Let F : (µ,τ) → (𝜈,σ) be a one-to-one 

fuzzy proper function with ν=F(𝜇 ). If F is fuzzy 

weakly 𝛿-continuous, then F is fuzzy weakly 𝛿-𝑟1-

continuous 

Proof. Suppose that there exist A ∈ 𝒥𝜇 and r ∈  𝐼0 

such that  
 

F(𝔻τ(A, r))(s) > 𝔻𝜎(F(A), r)(s), 
 

for some s ∈ S. Then, there exists x ∈ X such that 

F(x,s) > 0. Since F is one-to-one and F(µ) = ν, we 

have 𝐹(𝔻𝜏 (A, r))(s) = 𝔻 τ(A, r))(x) >
𝔻𝜎(𝐹(𝐴), 𝑟)(𝑠). Now we choose a real number 𝜂 

such that 𝔻τ(A, r))(x) > 𝜂 > 𝔻𝜎(F(A), r)(s). Since 

𝑃𝑠
𝜂

∉ 𝔻𝜎(𝐹(𝐴), r), there exists an 𝑅𝜎
𝑟-neighborhood 

V of F( 𝑃𝑥
𝜂

) =  𝑃𝑠
𝜂

 such that 𝐶𝜏(𝑉, 𝑟)�̅�𝐹(𝐴)[𝑉] 
which implies that F(A) ≤ 𝜈 − 𝐶𝜏(𝑉, 𝑟). Since F is 

fuzzy weakly 𝛿 -continuous, there exists an 𝑅𝜏
𝑟 -

neighborhood U of 𝑃𝑥
𝜂
 such that F(𝐶𝜏(𝑈, 𝑟) ≤ 𝑉 ≤

𝐶𝜏(𝑉, 𝑟). Thus, F(A)≤ 𝜈 − 𝐹(𝐶𝜏(𝑈, 𝑟)). Using the 

facts that F is one-to-one and F(𝜇)=ν and using The-

orem 2, we get 
 

A ≤ F–1(F(A)) ≤  F–1(ν – F(𝐶𝜏(𝑈, 𝑟))) 

= 𝜇 − F–1(F(𝐶𝜏(𝑈, 𝑟)))  ≤  𝜇 − 𝐶𝜏(𝑈, 𝑟). 
 

Therefore, A �̅�𝐶𝜏(𝑈, 𝑟)[𝜇]  and 𝑃𝑥
𝜂

∉ 𝔻𝜏(𝐴), 𝑟) 

which implies that 𝑃𝑠
𝜂

= 𝐹(𝑃𝑥
𝜂

)  ∉ 𝐹(𝔻𝜏(𝐴, 𝑟)), 

which is a contradiction to F( 𝔻𝜏(𝐴, 𝑟))  >  𝜂 . 

Hence, it follows that F(𝔻𝜏(𝐴, 𝑟))  ≤ 𝔻𝜎(𝐹(𝐴), 𝑟). 

The statement of the above theorem is not true 

when F is not one-to-one or F(µ)≠ 𝜈. The following 

counterexamples justify our statement.  
 

Counterexample 1: Let X ={𝑥, 𝑦}, 𝑆 = {𝑠, 𝑡}, 𝜇 {
[0.8, 0.7]

[𝑥, 𝑦]
∈

𝐼𝑋 , 𝜈 [0.8,0]
[𝑠,𝑡]

∈ 𝐼
𝑆
, 𝑈1

[0.4,0.3]

[𝑥,𝑦]
∈ 𝒥𝜇 and 𝑉1

[0.4,0]
[𝑠,𝑡]

 ∈  𝒥𝜈. 

We define τ : 𝒥𝜇 → 𝐼 and σ : 𝒥𝜈 → 𝐼 by 
 

𝜏(U) = {
1,           𝑈 = 0𝑋  , or 𝜇
0.7,      𝑈 = 𝑈1 ,         
0,      otherwis𝑒       

 

 

and 
 

σ(V )= {
1,           𝑉 = 0𝑆   or 𝜈
0.6,     𝑉 =  𝑉1,         
0,    otherwise.      

 

 

If the fuzzy proper function F : (µ, τ)  →
(𝜈, 𝜎) is defined by  
 

F(x,s)=0.8, F(x,t) = 0, F(y,s) = 0.7, F(y,t) = 0, 
 

Then F is not one-to-one and F(µ)
[0.8,0]

[𝑠,𝑡]
=  𝜈. We fix 

r = 0.5. For 𝑃𝑙
𝜂

∈ 𝜇 and for the 𝑅𝜎
𝑟 -neighborhood 

𝑉1 of F(𝑃𝑙
𝜂

), we can choose 𝑈1 as an 𝑅𝜏
𝑟-neighbor-

hood of 𝑃𝑙
𝜆 satisfying F(𝐶𝜏(𝑈1, 𝑟)) [0.4,0]

[𝑠,𝑡]
=  𝑉1. For 

ν we find 𝜇 such that F(𝐶𝜏(𝜇, 𝑟)) =  𝜈. Thus F is 

fuzzy weakly 𝛿-continuous. 

Consider the fuzzy point 𝑃𝑦
0.45  ∈  𝜇 and the 

fuzzy set 𝐴[𝑥,𝑦]
[0.04]

∈  𝒥𝜇 . If U  ∈  𝒥𝜇  is such that U 

=𝐼𝜏(𝐶𝜏(𝑈, 𝑟), 𝑟), then U = 0𝑋 or 𝜇 or 𝑈1 and both 

are the 𝑅𝜏
𝑟  ods 𝑃𝑦

0.45. Here, 𝐶𝜏(𝑈1, 𝑟), 𝑞𝐴[𝜇] and 

𝐶𝜏(𝜇, 𝑟), 𝑞𝐴[𝜇] . Therefore, 𝑃𝑦
0.45  ∈  𝔻𝜏(𝐴, 𝑟)  and 

F( 𝑃𝑦
0.45) =  𝑃𝑠

0.45 ∈ 𝐹(𝔻𝜏(𝐴, 𝑟) . Since, 𝑉1(𝑠) +

0.45 > 0.8 =  𝜈(𝑠)  and 𝐼𝜎(𝐶𝜎(𝑉1, 𝑟), 𝑟) =

 𝐶𝜎 ((𝜈– 𝑉1) [0.4,0]
[𝑠,𝑡]

, 𝑟) = 𝑉1,  
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𝑉1 is 𝑅𝜏
𝑟 -neighborhood of 𝑃𝑠

0.45.  We note that 

F(A)
[0.4,0]

[𝑠,𝑡]
 and F(A) �̅�𝐶𝜎(𝑉, 𝑟)[𝜈]  and hence 

𝑃𝑠
0.45  ∉ 𝔻𝜎(𝐹(𝐴), 𝑟) . Therefore F is not fuzzy 

weakly 𝛿-𝑟1-continuous. 
 

Counterexample 2: Let X = {𝑥, 𝑦}, 𝑆 = {𝑠, 𝑡},

𝜇 {
[0.9, 0.8]

𝑥, 𝑦
 ∈ 𝐼

𝑋
,𝜈 [1,1,]

[𝑠,𝑡]
∈ 𝐼

𝑆
, 𝑈1

[0.4,0.3]

[𝑥,𝑦]
∈ 𝒥𝜇 and 

𝑉1
[0.5,0.5]

[𝑠,𝑡]
 ∈  𝒥𝜈. 

We define τ : 𝒥𝜇 → 𝐼and σ : 𝒥𝜈 → 𝐼 by 
 

τ(U) = {
1,        𝑈 = 0𝑋  or 𝜇
0.6,    𝑈 = 𝑈1 ,      
0,        otherwise 

 

 

and 
 

σ(V) = {
1,          𝑉 = 0𝑆  or 𝜈
0.5,      𝑉 =  𝑉1,       
0,           otherwise.

 

 

Let the fuzzy proper function F :(𝜇, 𝜏)   →  (𝜈, 𝜎) be 

defined by  
 

F(x,s) = 0.9, F(x,t) = 0, F(y,s) = 0, F(y,t) = 0.8. 
 

Then, F(µ)
[0.9,0.8]

[𝑠,𝑡]
≠  𝜈. If r = 0.5, and for the 𝑅𝜎

𝑟-

neighborhood 𝑉1 of F (𝑃𝑙
𝜂

), we can fine 𝑈1 as a re-

quired 𝑅𝜏
𝑟-neighborhood of 𝑃𝑙

𝜂
∈ 𝜇. Indeed, we first 

note that F(𝐶𝜏(𝑈1, 𝑟))
[0.5,0.5]

[𝑠,𝑡]
=  V1. Since the only 

𝑅𝜎
𝑟-neighborhoods of F(𝑃𝑙

𝜂
) are 𝑉1 and ν, it follows 

that F is fuzzy weakly 𝛿-continuous.  

Consider 𝑃𝑦
0.55  ∈  𝜇 and 𝐴[𝑥,𝑦]

[0.04]
∈  𝒥𝜇 . 

Since 𝑃𝑦
0.55𝑞𝑈1[𝜇] and 𝑃𝑦

0.55𝑞𝜇[𝜇],  𝑈1 and 𝜇 are 

the 𝑅𝜏
𝑟 -neighborhoods of 𝑃𝑦

0.55.  Since 

𝐶𝜏(𝑈1, 𝑟), 𝑞𝐴[𝜇]  and 𝐶𝜏(𝜇, 𝑟), 𝑞𝐴[𝜇] , we have 

𝑃𝑦
0.55 ∈  𝔻𝜏(𝐴, 𝑟)  and F( 𝑃𝑦

0.55) =  𝑃𝑡
0.55 ∈

 𝔻𝜏(𝐴, 𝑟). Using  
 

𝑉1(𝑡) + 0.55 > 1 =  𝜈(𝑡) and 

𝐼𝜎(𝐶𝜎(𝑉1, 𝑟), 𝑟) =  𝐼𝜎 ((𝜈– 𝑉1) [0.5,0.5]
[𝑠,𝑡]

, 𝑟) = 𝑉1, 

 

we get that 𝑉1 is an 𝑅𝜏
𝑟-neighborhood of 𝑃𝑡

0.55. But 

F (A ) [0.4,0]
[𝑠,𝑡]

�̅�𝐶𝜎(𝑉, 𝑟) [𝜈]  implies that 𝑃𝑡
0.55 ∉

𝔻𝜎(𝐹(𝐴), 𝑟). 
 

Theorem 4: Let F: ( 𝜇, 𝜏)   →  (𝜈, 𝜎 ) be a fuzzy 

proper function. If (a) F is fuzzy weakly 𝛿-𝑟1-contin-

uous, (b) F is fuzzy weakly 𝛿-𝑟2-continuous, (c) F is 

fuzzy weakly 𝛿-𝑟3-continuous, then (a)⇒ b)⇒ (c).  

Proof is straightforward.  

Theorem 5: Let F: (𝜇, 𝜏)   →  (𝜈, 𝜎) be a one-to-one 

fuzzy proper function with ν=F(𝜇 ). If F is fuzzy 

weakly 𝛿-𝑟3-continuous, then F is 𝛿-𝑟4-continuous.  

Proof. Let V ∈  𝒥𝜈 with V = 𝕀𝜎(𝑉, 𝑟). Then,  

ν – V = ν –𝕀𝜎(𝑉, 𝑟) =   𝔻𝜎(𝜈 − 𝑉, 𝑟). By using the 

hypothesis, we get 𝔻𝜏(F–1(ν – V), r) = F–1(ν – V). 

Since F is one-to-one and ν = F(𝜇) and by Theorem 

2, we have F–1(ν–V) = 𝜇 − F–1(V). There-

fore, 𝔻𝜏(𝜇 −F–1(V), r) = 𝜇 − F–1(V).          □ 

The statement of the above theorem is not true 

when F is not one-to-one or F(𝜇)≠ 𝜈. The following 

counterexamples justify our statement.  
 

Counterexample 3: Let X = {𝑥, 𝑦}, 𝑆 = {𝑠, 𝑡},. We 

define 

𝜇 {[0.8,0.6]
[𝑥,𝑦]

 ∈ 𝐼𝑋, 𝜈
[0.8,0]

[𝑠,𝑡]
∈ 𝐼𝑆, 𝑈𝑛

[0.4+
1

𝑛+10
,0.4+

1

𝑛+10
]

[𝑥,𝑦]
, 

where n = 1, 2,… and 𝑉1
[0.4,0]

[𝑠,𝑡]
 ∈  𝒥𝜈. If τ : 𝒥𝜇 → 𝐼 

and σ : 𝒥𝜈 → 𝐼 are defined by 

τ(U) = {
1,                     𝑈 = 0𝑋  or 𝜇                               
0.6,                 𝑈 = 𝑈𝑛∀𝑛     or    ⋁ 𝑈𝑛 ,          
0,                otherwise                                      

 

 

and 
 

σ(V) = {
1,                  𝑉 = 0𝑆  or 𝜈
0.4,             𝑈 =  𝑉1,        
0,             otherwise     

 

 

then (𝜇, 𝜏) and (𝜈, 𝜎) are smooth fuzzy topological 

spaces. Let the fuzzy proper function F :(𝜇, 𝜏)   →
 (𝜈, 𝜎) be defined by  
 

F(x,s) = 0.8, F(x,t) = 0, F(y,s) = 0.6, F(y,t) = 0. 
 

We fix r = 0.4. Since 𝐶𝜎(𝑉1, 𝑟) = 𝑉1 =
 𝐼𝜎(𝑉1, 𝑟) and 𝐶𝜏(𝑈𝑛, 𝑟) =  𝑈𝑛 = 𝐼𝜏(𝑈𝑛, 𝑟),  n = 1, 

2, …, we get  𝔻𝜎(𝑉1, 𝑟) = 𝑉1,  F–1( 𝑉1) [0.4,0.4]
𝑥,𝑦

≤

𝐼𝜏(𝑈𝑛, 𝑟) , and 𝐶𝜏(𝐼𝜏(𝑈𝑛, 𝑟), 𝑟) =  𝑈𝑛.  Therefore, 

 𝔻𝜏 (F–1( 𝑉1), 𝑟) = (⋀ 𝑈𝑛) [0.4,0.4]
[𝑥,𝑦]

= F–1( 𝑉1) and 

hence F is fuzzy weakly 𝛿-𝑟3-continuous.  

We note that 𝐼𝜎(𝑉1, 𝑟) = 𝑉1and  𝔻𝜏(𝜇 −F–

1(𝑉1)) [0.4,0.2]
[𝑥,𝑦]

, 𝑟) = ⋀ 𝑈𝑛 ≠ 𝜇 −F–1(𝑉1). Thus, F is 

not fuzzy weakly 𝛿-𝑟4-continuous. 
 

Counterexample 4: Let X ={x, y}, S={s, t}. Define 

the fuzzy subsets 𝜇 {
[0.8, 0.6]

𝑥, 𝑦
∈ 𝐼𝑋, 𝜈 [0.8,0.8]

[𝑠,𝑡]
∈

𝐼𝑆
, 𝑈𝑛

[0.4+
1

𝑛+10
,0.4+

1

𝑛+10
]

[𝑥,𝑦]
,  where n = 1,2, … and 

𝑉1
[0.4,0.4]

[𝑠,𝑡]
. Let τ : 𝒥𝜇 → 𝐼 and σ : 𝒥𝜈 → 𝐼 be defined 

by 

τ(U) = {
1,              𝑈 = 0𝑋  or 𝜇                   

0.6,            𝑈 = 𝑈𝑛∀𝑛   or  ⋁ 𝑈𝑛 ,      
0,              otherwise                      

 

and 

σ(V) = {
1,             𝑉 = 0𝑆  or 𝜈         
0.5,        𝑈 =  𝑉1,                  

0,               otherwise             
 

 

If F :(𝜇, 𝜏)   →  (𝜈, 𝜎) is defined by  
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F(x,s) = 0.8, F(x,t) = 0, F(y,s) = 0, F(y,t) = 0, 
 

Then F is one-to-one and F(𝜇) [0.8,0.6]
[𝑠,𝑡]

≠ 𝜈. We fix  

r = 0.5. From 𝐶𝜎(𝑉1, 𝑟) = 𝑉1 =  𝐼𝜎(𝑉1, 𝑟) = 𝑉1, we 

have  𝔻𝜎(𝑉1, 𝑟) = 𝑉1 . Since 𝐶𝜏(𝑈𝑛, 𝑟) =  𝑈𝑛 =
𝐼𝜏(𝑈𝑛, 𝑟), n = 1,2,…, we get that  
 

F–1(𝑉1) [0.4,0.4]
𝑥,𝑦

≤ 𝐼𝜏(𝑈𝑛, 𝑟) 

and 

𝐶𝜏(𝐼𝜏(𝑈𝑛, 𝑟), 𝑟) =  𝑈𝑛. 
 

Therefore,  𝔻𝜏 (F–1( 𝑉1), 𝑟)) =

(⋀ 𝑈𝑛) [0.4,0.4]
[𝑥,𝑦]

= F–1( 𝑉1)  and hence F is fuzzy 

weakly 𝛿 - 𝑟3 -continuous. From the observations, 

𝐼𝜎(𝑉1, 𝑟) = 𝑉1 and 𝔻𝜏 ( 𝜇 − F–1( 𝑉1)), 𝑟) =
⋀ 𝑈𝑛 ≠ 𝜇 −F–1(𝑉1), we conclude that F is not fuzzy 

weakly 𝛿-𝑟4-continuous. 

The following counterexample shows that fuzzy 

weakly 𝛿 - 𝑟4 -continuous function is not a fuzzy 

weakly 𝛿-continuous function.  
 

Counterexample 5: Let X ={𝑥, 𝑦}, 𝑆 = {𝑠, 𝑡}. De-

fine 𝜇 {
[0.8, 0.7]

[𝑥, 𝑦]
 ∈ 𝐼𝑋, 𝜈 [0.8,0.7]

[𝑠,𝑡]
∈ 𝐼𝑆 and 𝑉1

[0.4,0.3]
[𝑠,𝑡]

 ∈

 𝒥𝜈 
 

If τ : 𝒥𝜇 → 𝐼 and σ : 𝒥𝜈 → 𝐼 are defined by 
 

τ(U) = {
1,           𝑈 = 0𝑋  or 𝜇
0,              otherwise

 

 

and 
 

σ(V) = {
1,             𝑉 = 0𝑆  or 𝜈
0.5,       𝑉 =  𝑉1,       
0,           otherwise,

 

 

then (𝜇, 𝜏) and (𝜈, 𝜎) are smooth fuzzy topological 

spaces. Let the fuzzy proper function F : (𝜇, 𝜏)   →
 (𝜈, 𝜎) be defined by  
 

F(x,s) = 0.8, F(x,t) = 0, F(y,s) = 0, F(y,t) = 0.7. 
 

Fix r = 0.5. If 𝐼𝜎(𝐶𝜎(𝑉, 𝑟), 𝑟) = 𝑉, then V = 0𝑆 or 

V = ν or V = 𝑉1. But 𝐶𝜎 ((𝜈 − 𝑉1) [0.4,0.4]
[𝑠,𝑡]

, 𝑟) ≰ 𝑉1 

implies that 𝕀𝜎(𝑉1, 𝑟) = 0𝑆. Since 𝔻𝜏(𝜇 −F–1(V), r) 

= 𝜇 −F–1(V), for every V with 𝕀𝜎(𝑉, 𝑟) = 𝑉, we get 

that F is fuzzy weakly 𝛿-𝑟4-continuous.  

Next, we claim that F is not fuzzy weakly 𝛿-

continuous. Since F (𝑃𝑦
0.45) = 𝑃𝑡

0.45𝑞𝑉1[𝜈]  and 

𝐼𝜎(𝐶𝜎(𝑉, 𝑟), 𝑟) = 𝑉1, 𝑉1 is an 𝑅𝜎
𝑟-neighborhood of 

𝑃𝑡
0.45. The only 𝑅𝜏

𝑟-neighborhood of 𝑃𝑦
0.45 is 𝜇, for 

which we have F(𝐶𝜏 (𝜇, 𝑟)) = 𝐹(𝜇) ≰ 𝑉1 . Hence, 

our claim holds. 

The proof of the following theorem is straight-

forward.  

Theorem 6: Let r, q ∈  𝐼0 and F :(𝜇, 𝜏) → (𝜈, 𝜎).  

1. If r < q and if F is fuzzy weakly 𝛿-𝑟1-continuous, 

then F is fuzzy weakly 𝛿˗[𝑟, 𝑞]1-continuous.  

2. If q < r and if F : (𝜇, 𝜏) → (𝜈, 𝜎) is fuzzy weakly 

𝛿˗[𝑟, 𝑞]1-continuous, then F is fuzzy weakly 𝛿-𝑟1-

continuous or F is fuzzy weakly 𝛿-𝑞1-continuous.  

3. If r < q and if F : (𝜇, 𝜏) → (𝜈, 𝜎) is fuzzy weakly 

𝛿 - 𝑟2 -continuous, then F is fuzzy weakly 

 𝛿˗[𝑟, 𝑞]2-continuous.  

4. If q < r and if F : (𝜇, 𝜏) → (𝜈, 𝜎) is fuzzy weakly 

𝛿˗[𝑟, 𝑞]2-continuous, then F is fuzzy weakly 𝛿-

𝑟2-continuous and F is fuzzy weakly 𝛿-𝑞2-contin-

uous.  

Definition 12: Let (𝜇, 𝜏), (𝜈, 𝜎) be smooth fuzzy top-

ological spaces, F : 𝜇, →  𝜈, be a fuzzy proper func-

tion and r, q ∈  𝐼0 be fixed. Then, F is called  
 

(1) fuzzy almost 𝑟1-continuous or FA𝛿-𝑟1-C if 

F(𝐶𝜏(𝐴, 𝑟))  ≤ 𝔻𝜎(𝐹(𝐴), 𝑟), ∀𝐴 ∈ 𝒥𝜇 , 
 

(2) fuzzy almost [𝑟, 𝑞]1-continuous or FA𝛿-[𝑟, 𝑞]1-C 

if 

F(𝐶𝜏(𝐴, 𝑟))  ≤ 𝔻𝜎(𝐹(𝐴), 𝑞), ∀𝐴 ∈ 𝒥𝜇, 
 

(3) fuzzy almost 𝑟2-continuous or FA𝛿-𝑟2-C if 

𝐶𝜏(𝐹−1(𝑉), 𝑟)  ≤ 𝐹−1(𝔻𝜎(𝑉, 𝑟)), ∀𝑉 ∈  𝒥𝜈  
 

(4) fuzzy almost [𝑟, 𝑞]2-continuous or FA𝛿-[𝑟, 𝑞]2-

C if 

𝐶𝜏(𝐹−1(𝑉), 𝑟)  ≤ 𝐹−1(𝔻𝜎(𝑉, 𝑞)), ∀𝑉 ∈  𝒥𝜈,  
 

(5) fuzzy almost 𝑟3-continuous or FA𝛿-𝑟3-C if 

𝐶𝜏(𝐹−1(𝑉), 𝑟)  ≤ 𝐹−1(𝑉) for each 𝑉 ∈  𝒥𝜈  with 

V=𝔻𝜎(𝑉, 𝑟), 
 

(6) fuzzy almost 𝑟4-continuous or FA𝛿-𝑟4-C if 

𝐶𝜏(𝜇 − 𝐹−1(𝑉), 𝑟) = 𝜇 − 𝐹−1(𝑉) ∀𝑉 ∈ 𝒥𝜈        
with V = 𝕀𝜎(𝑉, 𝑟). 

 

Theorem 7: Let F : (𝜇, 𝜏) → (𝜈, 𝜎) be a one-to-one 

fuzzy proper function with ν = F(𝜇). If F is fuzzy al-

most continuous, then F is fuzzy almost 𝑟1-continu-

ous.  
 

Since the proof of this theorem is similar to that of 

Theorem 4.7 in [11], we prefer to omit the details. 

The statement of the above theorem is not true 

when F is not one-to-one F(𝜇) ≠ 𝜈. The following 

counterexamples justify our statement.  
 

Counterexample 6: Let X = {x,y}, S = {s,t}. If de-

fine 𝜇 {
[0.7, 0.5]

[𝑥, 𝑦]
∈ 𝐼𝑋, 𝜈 [0.7,0]

[𝑠,𝑡]
∈ 𝐼𝑆

, 𝑈1
[0.3,0.3]

[𝑥,𝑦]
∈ 𝒥𝜇  and 

𝑉1
[0.3,0]

[𝑠,𝑡]
 ∈  𝒥𝜈 

We define smooth fuzzy topologies 𝜏 on 𝜇 

and 𝜎 on 𝜈 by 

𝜏(U) = {
 1,                𝑈 = 0𝑋  or 𝜇
0.6,           𝑈 = 𝑈1         
0,         otherwise         
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and 
 

σ(V) = {
1,              𝑉 = 0𝑆  or 𝜈
0.5,          𝑉 =  𝑉1,        
0,          otherwise.     

 

 

Let the fuzzy proper function F : (𝜇, 𝜏)   →
 (𝜈, 𝜎) be defined by  
 

F(x,s) = 0.7, F(x,t) = 0, F(y,s) = 0.5, F(y,t) = 0. 
 

Then, F is not one-to-one and F(𝜇) [0.7,0]
[𝑠,𝑡]

= 𝜈. We 

fix r = 0.5. For the 𝑅𝜎
𝑟 -neighborhood 𝑉1  of any 

F(𝑃𝑙
𝜂

), there exists 𝑈1 as a 𝑄𝜏
𝑟-neighborhood of 𝑃𝑙

𝜂
 

such that F(𝑈1) [0.3,0]
[𝑠,𝑡]

= 𝑉1. For 𝜈, we choose 𝜇 as 

a 𝑄𝜏
𝑟-neighborhood 𝑃𝑙

𝜂
 such that F(𝜇) = 𝜈. Hence 

F is fuzzy almost continuous.  

Since 𝑃𝑦
0.45𝑞𝑈1[𝜇] and 𝑃𝑦

0.45𝑞𝜇[𝜇] , 𝑈1  and 

𝜇  are the 𝑄𝜏
𝑟 -neighborhoods 𝑃𝑦

0.45 . Clearly, we 

have 𝑃𝑦
0.45 ∈ 𝐶𝜏(𝐴, 𝑟) and F( 𝑃𝑦

0.45) = 𝑃𝑠
0.45 =

𝐹(𝐶𝜏(𝐴, 𝑟)). Since,  
 

𝑉1(𝑠) + 0.45 > 0.7 = 𝜈(𝑠) and  𝐼𝜎(𝐶𝜎(𝑉1, 𝑟), 𝑟) =

𝐶𝜎((𝜈 − 𝑉1) [0.4,0]
[𝑠,𝑡]

, 𝑟) = 𝑉1, 
 

we get that 𝑉1  is an 𝑅𝜎
𝑟 -neighborhood of 𝑃𝑠

0.45 . 

Since F(A)
[0.3,0]

[𝑠,𝑡]
�̅�𝐶𝜎(𝑉, 𝑟)[𝜈] , we have 𝑃𝑠

0.45 ∉

𝔻𝜎(𝐹(𝐴), 𝑟) and hence F is not fuzzy almost 𝑟1-

continuous. 
 

Counterexample 7: Let X = {𝑥, 𝑦}, 𝑆 = {𝑠, 𝑡}. De-

fine the fuzzy subsets µ {
[0.7, 0.6]

[𝑥, 𝑦]
∈ 𝐼𝑋, 𝜈 [0.7,0.8]

[𝑠,𝑡]
∈

𝐼
𝑆
, 𝑈1

[0.3,0.3]
[𝑥,𝑦]

∈ 𝒥𝜇, and 𝑉1
[0.4,0.4]

[𝑠,𝑡]
 ∈  𝒥𝜈 . 

If τ : 𝒥𝜇 → 𝐼 and σ : 𝒥𝜈 → 𝐼  are respectively, de-

fined by 

𝜏(U) = {
1,                  𝑈 = 0𝑋 or 𝜇
0.6,             𝑈 = 𝑈1         
0,                   otherwise 

 

 

and 
 

σ(V) = {

1,                  𝑉 = 0𝑆  or 𝜈
0.5,             𝑉 =  𝑉1,       
0,                otherwise.

 

 

then (𝜇, 𝜏) and (𝜈, 𝜎) are smooth fuzzy topological 

spaces. If F : (𝜇, 𝜏) → (𝜈, 𝜎) is defined by  
 

F(x,s) = 0.7, F(x,t) = 0, F(y,s) = 0, F(y,t) = 0.6, 
 

then as in the previous counterexample, we can ver-

ify that F is one-to-one, F(𝜇) [0.7,0.6]
[𝑠,𝑡]

≠ 𝜈 and F is 

fuzzy almost continuous. 

Next, we claim that F( 𝐶𝜏(𝐴, 𝑟)) ≰

𝔻𝜎(𝐹(𝐴), 𝑟), for 𝐴 [0,0.4]
[𝑥,𝑦]

 ∈  𝒥𝜇 . Since 𝑃𝑦
0.41𝑞𝑈1[𝜇] 

and𝑃𝑦
0.41𝑞𝜇[𝜇], we get that 𝑈1  and μ are the 𝑄𝜏

𝑟-

neighborhoods 𝑃𝑦
0.41. We have, U1(y) + A(y) > 0.6 

= μ(y),  𝑃𝑦
0.41 ∈  𝐶𝜏(𝐴, 𝑟) and F( 𝑃𝑦

0.41) = 𝑃𝑡
0.41 =

𝐹(𝐶𝜏(𝐴, 𝑟)).Using V1(t) + 0.41 > 0.8 = 𝜈 (t) and 

𝐼𝜎(𝐶𝜎(𝑉1, 𝑟), 𝑟) =  𝑉1, we obtain that V1 is an 𝑅𝜎
𝑟 -

neighborhood of 𝑃𝑠
0.41. However, F(𝐴) [0,0.4]

[𝑠,𝑡]
 is not 

quasi-coincident with 𝐶𝜎(𝑉, 𝑟) in ν. Therefore, F is 

not fuzzy almost r1-continuous.  
 

Theorem 8: Let F : (𝜇, 𝜏) → (𝜈, 𝜎) be a fuzzy proper 

function. If (ɑ) F is fuzzy almost r1-continuous, (b) F 

is fuzzy almost r2-continuous, (c) F is fuzzy almost 

r3-continuous, then (a) ⇒ (b) ⇒ (c).  

The proof of the theorem is straightforward. 
 

Theorem 9: Let F : (𝜇, 𝜏)  → (𝜈, 𝜎) be a one-to-one 

fuzzy proper function with ν = F(𝜇). If F is fuzzy al-

most r3-continuous, then F is almost r4-continuous. 
  

Proof. If V ∈ 𝒥𝜈 is such that V =  𝕀𝜎(𝑉, 𝑟), then ν – 

V = ν – 𝕀𝜎(𝑉, 𝑟)= 𝔻𝜎(𝜈– 𝑉, 𝑟). Using hypothesis, 

we get 𝐶𝜏(𝐹−1(𝜈– 𝑉), 𝑟) =  𝐹−1(𝜈– 𝑉). Since F is 

one-to-one and ν = F( 𝜇), using Theorem 2, we 

have 𝐹−1(𝜈– 𝑉) =  𝜇 −  𝐹−1(𝑉). Therefore, 
 

𝐶𝜏 (𝜇 − 𝐹−1(𝑉), 𝑟) = 𝜇 −  𝐹−1(𝑉). □ 
 

The statement of the above theorem is not true when 

F is not one-to-one or F(𝜇) ≠ 𝜈 . The following 

counterexamples justify our statement.  
 

Counterexample 8: Let X = {x, y}, S = {s, t}. We 

define, 𝜇 [0.8,0.6]
[𝑥,𝑦]

∈ 𝐼𝑋, 𝜈 [0.8,0]
[𝑠,𝑡]

∈ 𝐼𝑆 ,𝑈1
[0.4,0.2]

[𝑥,𝑦]
∈ 𝒥𝜇 , 

𝑉1
[0.4,0]

[𝑠,𝑡]
 ∈  𝒥𝜈. 

We define τ : 𝒥𝜇 → 𝐼 and σ : 𝒥𝜈 → 𝐼 by 
 

𝜏(U) = {
1,            𝑈 = 0𝑋  or 𝜇

0.6,          𝑈 = 𝑈1           
0,          otherwise          

 

 

and 
 

σ(V ) = {
1,            𝑉 = 0𝑠  or 𝜈,
0.4,        𝑈 =  𝑉1,         
0,        otherwise.        

 

 

Let the fuzzy proper function F:( 𝜇, 𝜏)   →
 (𝜈, 𝜎) be defined by  
 

F(x,s) = 0.8, F(x,t) = 0, F(y,s) = 0.6, F(y,t) = 0. 
 

We fix r = 0.4. Since 𝔻𝜎(𝑉1 , 𝑟) = 𝑉1  and 

𝕀𝜎(𝑉1, 𝑟) = 𝑉1 , we obtain that F–1( 𝑉1) [0.4,0.4]
[𝑥,𝑦]

=

𝐶𝜏 (𝜇 − 𝑈1,𝑟). Hence, F is fuzzy almost r3-continu-

ous. But  

𝐶𝜏((𝜇 − 𝐹−1(𝑉1))
[0.4, 0.2]

[𝑥, 𝑦]
, 𝑟) =  𝜇 − 𝑈1

≠ 𝑈1 = 𝜇 − 𝐹−1(𝑉1) 
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implies that F is not fuzzy almost r4-continuous. 
  

Counterexample 9: Let X = {x, y}, S = {s, t}, 

𝜇 [0.8,0.6]
[𝑥,𝑦]

∈ 𝐼𝑋, 𝜈 [1,0.8]
[𝑠,𝑡]

∈ 𝐼𝑆, 𝑈1
[0.3,0.2]

[𝑥,𝑦]
, 𝑉1

[0.5,0.4]
[𝑠,𝑡]

. 
 

If τ : 𝒥𝜇 → 𝐼 and σ : 𝒥𝜈 → 𝐼 are respectively, de-

fined by 
 

𝜏(U) = {
1,                 𝑈 = 0𝑋  or 𝜇          
0.5,              𝑈 = 𝑈1                   
0,             otherwise                

 

and 
 

σ(V) = {
1,                 𝑉 = 0𝑠  or 𝜈,

0.4,              𝑈 =  𝑉1,          
0,           otherwise.           

 

 

then (𝜇, 𝜏) and (𝜈, 𝜎) are smooth fuzzy topological 

spaces. If F:(𝜇, 𝜏) →  (𝜈, 𝜎) is defined by  
 

F(x,s) = 0.8, F(x,t) = 0, F(y,s) = 0, F(y,t) = 0.6, 
 

then F( 𝜇) [0.8,0.6]
[𝑠,𝑡]

≠ 𝜈. We fix r = 0.4. Since 

𝐶𝜎(𝑉1, 𝑟) =  𝑉1 and 𝐼𝜎(𝑉1, 𝑟) =  𝑉1,  we have  

𝔻𝜎(𝑉1 , 𝑟) = 𝑉1. Using F–1(𝑉1) [0.5,0.4]
[𝑥,𝑦]

= 𝜇 − 𝑈1  =

𝐶𝜏 (𝐹−1(𝑉1, 𝑟)), we get that F is fuzzy almost r3-

continuous. From 𝕀𝜎(𝑉1, 𝑟) = 𝑉1  and 𝐶𝜏(𝜇 −
𝐹−1(𝑉1), 𝑟) =  𝜇 − 𝑈1 ≠ 𝜇 − 𝐹−1(𝑉1) , we con-

clude that F is not fuzzy almost r4-fuzzy continuous.  

The following counterexample shows that F is 

fuzzy almost r4-continuous but F is not fuzzy almost 

continuous.  
 

Counterexample 10: Let 𝑋 =  {𝑥, 𝑦}, S = {s, t}. 

Define 𝜇 [0.8,0.7]
[𝑥,𝑦]

∈ 𝐼𝑋, 𝜈
[0.8,0.7]

[𝑠,𝑡]
∈ 𝐼𝑆,

and  𝑉1  [0.4,0.3]
[𝑠,𝑡]

∈  𝒥𝜈. 

If τ : 𝒥𝜇 → 𝐼 and σ : 𝒥𝜈 → 𝐼 are respectively, de-

fined by 

τ(U) = {
1,        𝑈 = 0𝑋 or 𝜇,
0,      otherwise     

   
 

and 
 

σ(V) = {
1,        𝑉 = 0𝑆 or 𝜈,
0.5,     𝑉 =  𝑉1,       
0,      otherwise,     

 

 

then (𝜇, 𝜏) and (𝜈, 𝜎) are smooth fuzzy topological 

spaces. We define a fuzzy proper function F : 

(𝜇, 𝜏) →  (𝜈, 𝜎) by F(x,s) = 0.8, F(x,t) = 0, F(y,s) = 

0, F(y,t) = 0.7. If r = 0.5, then 𝕀𝜎(𝑉1, 𝑟) = 0𝑆 and 

hence F is fuzzy almost r4-continuous.  

Clearly, V1 is an 𝑅𝜎
𝑟 -neighborhood of 

𝐹(𝑃𝑦
0.45) = 𝑃𝑦

0.45 and the only 𝑄𝜏
𝑟-neighborhood of 

𝑃𝑦
0.45 is 𝜇. Since 𝐹(𝜇) ≰ 𝑉1, we get that F is not 

fuzzy almost continuous.  

The proof of the following theorem is obvious.   
 

Theorem 10: Let r, q ∈ 𝐼0 and F : (𝜇, 𝜏) →  (𝜈, 𝜎). 

1. If r < q and if F is fuzzy almost r1-continuous, 

then F is fuzzy almost [r,q]1-continuous.  

2. If q < r and if F : (𝜇, 𝜏) →  (𝜈, 𝜎) is fuzzy almost 

[r,q]1-continuous, then F is fuzzy almost r1-con-

tinuous and fuzzy almost q1 continuous.  

3. If r < q and if F : (𝜇, 𝜏) → (𝜈, 𝜎) is fuzzy almost 

r2-continuous, then F is fuzzy almost [r,q]2-con-

tinuous.  

4. If q < r and if F : (𝜇, 𝜏) →  (𝜈, 𝜎) is fuzzy almost 

[r,q]2-continuous, then F is fuzzy almost r2-con-

tinuous and F is fuzzy almost q2-continuous.  

The results obtained in this section are summarized 

in the following implication diagram. 
 

 

 
 

FUZZY 𝑞𝛼
𝑟 -PRE-CLOSURE AND FUZZY 

𝑞𝛼
𝑟 -PRE-CONTINUOUS MAPS 

 

Definition 13: We say that U, V ∈  𝒥𝜇 are said to 

be α-quasi-coincident referred to 𝜇  [written as 

UqαV[μ]] if there exists x ∈ X such that U(x) + V(x) 

> μ (x) + α. If U is not α-quasi coincident with V, 

then we write U�̅�αV[μ]. 
 

Definition 14: A fuzzy set U ∈ 𝒥𝜇 is called a fuzzy 

𝑞𝛼
𝑟 -pre-neighborhood of α fuzzy point 𝑃𝑥

⋋  in μ if 

𝑃𝑥
⋋𝑞𝛼 𝑈[𝜇] and U is r-preopen. 
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Definition 15: A fuzzy proper function F : 𝜇 → 𝜈 is 

said to be fuzzy 𝑞𝛼
𝑟 -pre-continuous if for every 𝑞𝛼

𝑟 -

pre-neighborhood V of F(𝑃𝑥
⋋), there exists a 𝑞𝛼

𝑟 -

pre-neighborhood U of 𝑃𝑥
⋋ such that F(U)≤V.  

 

Definition 16: Let (𝜇, 𝜏) be a smooth fuzzy topolog-

ical space and A∈  𝒥𝜇. Then the fuzzy 𝑞𝛼
𝑟 -pre-clo-

sure PClα(A, r) of A is defined as follows:  

⋁  { 𝑃𝑥
⋋: U qα A[μ] 

for every 𝑞𝛼
𝑟 -pre-neighborhood U of 𝑃𝑥

⋋}.  
 

Theorem 11: Let (𝜇, 𝜏) be a smooth fuzzy topologi-

cal space. For A, B ∈  𝒥𝜇 , r ∈  𝐼0 and α ∈ I, this clo-

sure operator PClα satisfies the following proper-

ties:  

(1) PClα(0𝑋, 𝑟) =  0𝑋, 
(2) A≤ PClα(𝐴, 𝑟), 
(3) PClα(𝐴, 𝑟) ≤ PClα(𝐵, 𝑟) if A≤B,  

(4) PClα(𝐴, 𝑟) ˅ PClα(𝐵, 𝑟) = PClα(A ˅ B, r), 

(5) PClα(A ˄ B, r) ≤ PClα(𝐴, 𝑟) ˄ PClα(A ˅ B, r), 

(6) PClα (PClα(𝐴, 𝑟),r) = PClα(𝐴, 𝑟). 
Proof. 

1. Clearly, PClα(0𝑋, 𝑟) =  0𝑋. 
 

2. Let 𝑃𝑥
⋋ ∈ 𝐴 and U be a 𝑞𝛼

𝑟 -pre-neighborhood of 

𝑃𝑥
⋋. Then, A(x) ≥ ⋋and U(x) + ⋋ 𝜇(x) + α. There-

fore, A(x) + U(x) ≥ ⋋+U(x) > 𝜇(x) + α. Thus, 

АqαU[μ] and hence, 𝑃𝑥
⋋ ∈ PClα(𝐴, 𝑟). 

 

3. Let A ≤ B. Let 𝑃𝑥
⋋ ∈ PClα(𝐴, 𝑟) and U be a 𝑞𝛼

𝑟 -

pre-neighborhood of 𝑃𝑥
⋋. Then, UqαA[μ]. Since 

UqαA[μ] and A ≤ B, there exists y ∈ X such that 

U(y) + B(y) ≥ U(y) + A(y) >  𝜇(y) + α, which im-

plies that 𝑃𝑥
⋋ ∈ PClα(𝐵, 𝑟). Thus, PClα(𝐴, 𝑟) ≤ 

PClα(𝐵, 𝑟). 
 

4. From (3), we get PClα( 𝐴, 𝑟)  ˅ PClα( 𝐵, 𝑟)  ≤ 

PClα(𝐴 ˅ B, r). If 𝑃𝑥
⋋ ∈ PClα(𝐴˅B, r) and U is a 

𝑞𝛼
𝑟 -pre-neighborhood of 𝑃𝑥

⋋, then Uqα(A˅B)[μ]. 

If U�̅�αA[μ] and U�̅�αB[μ], then U + A ≤ μ+α and 

U + B ≤ μ + α. Hence, Uqα(A ˅ B)[μ], which is a 

contradiction. Therefore, PClα( 𝐴, 𝑟)  ˅ 

PClα(𝐵, 𝑟) = PClα(𝐴 ˅ B, r). 
 

5. By (3), we have PClα(𝐴 ˄ B, r) ≤ PClα(𝐴, 𝑟) and 

PClα(𝐴 ˄ B, r) ≤ PClα(𝐵, 𝑟). Thus, PClα(𝐴 ˄ B, 

r) ≤ PClα(𝐴, 𝑟) ˄ PClα(𝐵, 𝑟). 
 

6. Again by using (3), we get PClα(𝐴, 𝑟) ≤ PClα 

(PClα(𝐴, 𝑟), r). If 𝑃𝑥
⋋ ∈ PClα(PClα(𝐴, 𝑟), r) and 

U is a 𝑞𝛼
𝑟 -pre-neighborhood of 𝑃𝑥

⋋, then we have 

UqαPClα(𝐴, 𝑟)[𝜇]. Thererfore, we can find s ∈ S 

such that U(s) + PClα(A, r) (s) ≥ μ(s) + α. If η = 

PClα(A, r) (s), then 𝑃𝑠
𝜂

qαU[μ] and 𝑃𝑠
𝜂

∈ PClα(A, 

r). Therefore, Uqα 𝐴[𝜇]  and hence 𝑃𝑥
⋋ ∈ 

PClα(𝐴,r).                      □ 

The following counterexample shows that the equal-

ity does not hold in (5).  
 

Counterexample 11: Let 𝑋 =  {𝑥, 𝑦}, 𝜇 [0.6,0,5]
[𝑥,𝑦]

 ∈

𝐼𝑋, 𝑈1
[0.3,0.3]

[𝑥,𝑦]
∈  𝒥𝜇. 

 

Define τ : 𝒥𝜇 → 𝐼 by 𝜏(U) = {
1,           𝑈 = 0𝑋  or 𝜇
0.6,      𝑈 = 𝑈1          
0,       otherwise       

 

 

We fix α = 0.1, r = 0.5, A
[0.4,0.4]

[𝑥,𝑦]
, and B

[0,0.5]
[𝑥,𝑦]

.  
 

Case 1. 0𝑋 ≠ 𝑈 ≤ (𝜇 − 𝑈1) [0.3,0.2]
[𝑥,𝑦]

. In this case, 

𝐼𝜏(𝐶𝜏(𝑈, 𝑟), 𝑟) = 𝐼𝜏(𝜇 − 𝑈1, 𝑟) = 0𝑋 ≱ 𝑈. 
 

Case 2. 𝜇 ≠ 𝑈 ≰ 𝜇 − 𝑈1. Here, 

𝐼𝜏(𝐶𝜏(𝑈, 𝑟), 𝑟) = 𝐼𝜏(𝜇, 𝑟) = 𝜇 ≥ 𝑈. 
 

If 𝑈 ∈  𝒥𝜇 is such that U(x) > 0.3 or U(y) > 0.2, then 

U is r-pre-open. Then, the possible 𝑞𝛼
𝑟 -pre-neigh-

borhoods of 𝑃𝑦
0.5 are K

[𝑙,𝑚]
[𝑥,𝑦]

, where l > 0.3, 0.2 ≥ m 

>0.1 and J
[𝑙,𝑚]
[𝑥,𝑦]

, where l ∈ [0,0.6], m > 0.2. The ine-

qualities  
 

K(x) + A(x) > 0.3 + 0.4 = 0.7 = 0.6 + 0.1 = μ(x) + α 
 

J(y) + A(y) > 0.2 + 0.4 = 0.6 = 0.5 + 0.1 = μ(y) + α, 
 

imply that 𝑃𝑦
0.5 ∈  PClα(A, r). Clearly, 𝑃𝑦

0.5 ∈ 

PClα(B, r) and hence 𝑃𝑦
0.5 ∈ PClα(A, r) ˄  PClα(B, r). 

We note that K
[0.35,0.15]

[𝑥,𝑦]
 is a 𝑞𝛼

𝑟 -pre-neighborhood 

of 𝑃𝑦
0.5. But, K(x) + (A ˄ B)(x) = 0.35 + 0 = 0.35 < 

0.7 = μ(x) + α and K(y) + (A ˄ B)(y) = 0.15 + 0.4 = 

0.55 < 0.6 = μ(y) + α imply that 𝑃𝑦
0.5 ∉ PClα(A ˄ B, 

r).  
 

Theorem 12: Let F : (𝜇, 𝜏) → (𝜈, 𝜎) be a one -to-one 

fuzzy proper function with 𝜈 = F(μ). If F is fuzzy 

𝑞𝛼
𝑟 -pre-continuous, then F(PClα(A, r)) ≤ PClα(𝐹(𝐴), 

r), for every A ∈ 𝒥𝜇.  
 

Proof. Suppose that 𝑃𝑥
⋋ ∈   𝒥𝜈  is such that 𝑃𝑠

⋋ ∉ 

PClα(𝐹(𝐴), r). Since F(μ)(s) = 𝜈(s) ≥ ⋋ > 0, there 

exists x ∈ X such that F(x,s) = μ(x) and F(𝑃𝑥
⋋) = 𝑃𝑠

⋋. 
On the other hand, there exists a 𝑞𝛼

𝑟 -pre-neighbor-

hood V of F(𝑃𝑥
⋋) such that VqαF(A)[ν]. Therefore, 

we get V(s) + ⋋ > ν(s) + α and V + F(A) ≤ ν + α. 

Since F is 𝑞𝛼
𝑟 -pre-continuous, there exists a 𝑞𝛼

𝑟 -pre-

neighborhood U of 𝑃𝑥
⋋ such that F(U) ≤ V. Since F 

is one-to-one and F(μ)=  𝜈, we get U(x) + A(x) ≤ 

F(U)(s) + F(A)(s) ≤ V(s) + F(A)(s) ≤  𝜈(s) + α = μ(x) 

+ α. Therefore, U�̅�αA[μ] and F(𝑃𝑥
⋋) ∉ F(PClα(𝐴, r)). 

Hence, F(PClα(𝐴, r)) ≤ PClα(𝐹(𝐴), r), for every A ∈
 𝒥𝜇.  

The statement of the above theorem fails to be 

true when F is not one-to-one and F(μ) ≠ 𝜈. The fol-

lowing counterexamples justify our statement.  
 



Some weaker forms of smooth fuzzy continuous functions 

Прилози, Одд. pрир. маt. биоtех. науки, МАНУ, 36 (2), 153–164 (2015) 

161 

Counterexample 12: Let X = {x,y}, S = {s,t}. De-

fine 𝜇 [0.6,0.5]
[𝑥,𝑦]

∈ 𝐼𝑋 , 𝜈 [0.6,0]
[𝑠,𝑡]

∈ 𝐼𝑆 ,  𝑈1
[0.3,0.3]

[𝑥,𝑦]
∈ 𝒥𝜇 , 

and 𝑉1
[0.4,0]

[𝑠,𝑡]
∈  𝒥𝜈.   

If τ : 𝒥𝜇 → 𝐼 and σ : 𝒥𝜈 → 𝐼 are respectively, de-

fined by 
 

𝜏(U) = {
1,           𝑈 = 0𝑋  or 𝜇
0.6,       𝑈 = 𝑈1          
0,      otherwise        

  

 

and 
 

σ(V) = {
1,           𝑉 = 0𝑆 or 𝜈,
0.5,        𝑉 =  𝑉1,       
0,      otherwise,    

 

 

then (𝜇, 𝜏) and (𝜈, σ)are smooth fuzzy topological 

spaces. If F : (𝜇, 𝜏) →  (𝜈, 𝜎) is defined by 
 

F(x,s) = 0.6, F(x,t) = 0, F(y,s) = 0.5, F(y,t) = 0, 
 

then F is not one-to-one and F(μ)
[0.6,0]

[𝑠,𝑡]
= 𝜈. Fix r = 

0.5 and α = 0.1. First, we find all r-preopen sets in μ 

and ν. Clearly, 0𝑋 , μ are r-preopen sets.  
 

Case 1. 0𝑆 ≠ 𝑈 ≤ (𝜇 − 𝑈1) [0.3,0.2]
[𝑠,𝑡]

. In this case, 

𝐼𝜏(𝐶𝜏(𝑈, 𝑟), 𝑟) = 𝐼𝜏(𝜇 − 𝑈1, 𝑟) = 0 ≱ 𝑈. Hence, , 

each U is not r-preopen.  
 

𝐂𝐚𝐬𝐞 𝟐.  𝜇 ≠ 𝑈 ≰ (𝜇 − 𝑈1).  Here,

𝐼𝜏(𝐶𝜏(𝑈, 𝑟), 𝑟) = 𝐼𝜏(𝜇, 𝑟) = 𝜇 ≥ 𝑈.  Hence, 𝑈 [𝑝,𝑞]
[𝑥,𝑦]

 

is r-preopen, whenever p > 0.3 or q > 0.2. Next we 

find all r-preopen sets in 𝜈. Clearly, 0𝑆 , 𝜈 are r-

preopen sets.  
 

Case (i).  0𝑆 ≠ 𝑉 ≤ (𝜈 − 𝑉1) [0.2,0]
[𝑠,𝑡]

. In this case, 

𝐼𝜎(𝐶𝜎(𝑉, 𝑟), 𝑟) = 𝐼𝜎(𝜈 − 𝑉1, 𝑟) = 0 ≱ 𝑉. Hence, 

each V is not r-preopen.  
 

Case (ii).  𝜈 ≠ 𝑉 ≰ (𝜈 − 𝑉1). Here, 

𝐼𝜎(𝐶𝜎(𝑉, 𝑟), 𝑟) = 𝐼𝜎(𝜈, 𝑟) = 𝜈 ≥ 𝑉 . Hence, 𝑉 [𝑝,𝑞]
[𝑠,0]

 

is r-preopen, where p > 0.2. We claim that F is 𝑞𝛼
𝑟 -

pre-continuous. Clearly, 𝜈  is a 𝑞𝛼
𝑟 -pre-neighbor-

hood of both F(𝑃𝑥
⋋) and F(𝑃𝑦

𝜂
). For 𝜈, we choose 𝜇 

as a required 𝑞𝛼
𝑟 -pre-neighborhood of both 𝑃𝑥

⋋, 𝑃𝑦
𝜂

 

such that F(μ) = 𝜈. Let 𝑉 [𝑙,0]
[𝑠,𝑡]

 be a 𝑞𝛼
𝑟 -pre-neighbor-

hood of F(𝑃𝑥
⋋) = 𝑃𝑠

⋋. Since V is r-preopen, we have 

l > 0.2.  
 

Case (a). 0.3 ≥ l > 0.2. If we choose 𝑈 [𝑙,𝑚]
[𝑥,𝑦]

 with l ≥ 

m > 0.2, then U(x) + ⋋ = l + ⋋ = V(s) + ⋋ >  𝜈(s) + 

α = 0.6 + 0.1 =  𝜇 (x) + α. Since U(y) = m > 0.2, U 

is r-preopen. Therefore, U is a 𝑞𝛼
𝑟 -pre-neighborhood 

of 𝑃𝑥
⋋ such that F(U)

[𝑙,0]
[𝑠,𝑡]

 = V.  
 

Case (b). l > 0.3. In this case, we choose U
[𝑙,0]
[𝑥,𝑦]

 as a 

required 𝑞𝛼
𝑟 -pre-neighborhood of 𝑃𝑥

⋋  such that 

F(U)
[𝑙,0]
[𝑠,𝑡]

 = V.  

Let 𝑉 [𝑙,0]
[𝑠,𝑡]

 be a 𝑞𝛼
𝑟 -pre-neighborhood of 

F(𝑃𝑦
𝜂

) =  𝑃𝑠
𝜂
. Since V is r-preopen, we have l > 0.2. 

Clearly, U
[0,𝑙]
[𝑥,𝑦]

 is r-preopen and U(y) + η = V(s) + η 

> 0.7 > 0.5 + 0.1 =  𝜇(y) + 𝛼 and hence F is 𝑞𝛼
𝑟 -pre-

continuous. Now, we claim that F(PClα(𝐴 , r))   ≰ 

PClα(𝐴, r) for A
[0.4,0.4]

[𝑥,𝑦]
. The possible r-preopen sets 

of 𝑃𝑥
0.5are K

[𝑙,𝑚]
[𝑥,𝑦]

, where 0.3 ≥ l > 0.2 and m > 0.2 

and J
[𝑙,𝑚]
[𝑥,𝑦]

, where l > 0.3 and m ∈ [0, 0.5]. Since K(y) 

+ A(y) > μ(y) + 𝛼 and J(x) + A(x) > μ(x) + 𝛼, we get 

that F(𝑃𝑥
0.5) ∈ F(PClα(𝐴 ,r)). Clearly, V

[0.21,0]
[𝑠,𝑡]

 is r-

preopen and V(s) + 0.5 > 𝜈(s) + α. Since F(A)
[0.4,0]

[𝑠,𝑡]
, 

we have V(s) + F(A)(s) < 𝜈(s) + α and V(t) + F(A)(t) 

= 0 < 𝜈(t) + α. Therefore, V is a 𝑞𝛼
𝑟 -pre-neighbor-

hood of F(𝑃𝑥
0.5) and V�̅�αF(A)[𝜈]. Thus, F(𝑃𝑥

0.5) ∉ 

PClα(𝐹(𝐴), r).  
 

Counterexample 13: Let X = {x,y}, S = {s,t}. De-

fine 𝜇 [0.7,0.6]
[𝑥,𝑦]

∈ 𝐼𝑋 , 𝜈 [0.8,0.8]
[𝑠,𝑡]

∈ 𝐼𝑆 , 𝑈1
[0.4,0.3]

[𝑥,𝑦]
∈ 𝒥𝜇 , 

and 𝑉1
[0.5,0.5]

[𝑠,𝑡]
∈  𝒥𝜈. 

 

Let τ : 𝒥𝜇 → 𝐼 and σ : 𝒥𝜈 → 𝐼 be defined by 
 

𝜏(U) = {
1,           𝑈 = 0𝑋  or 𝜇
0.6,        𝑈 = 𝑈1         
0,         otherwise     

  

 

and 
 

σ(V)= {

1,           𝑉 = 0𝑆 or 𝜈,
0.5,       𝑉 =  𝑉1,        
0,         otherwise,   

 

 

If F:(𝜇, 𝜏) →  (𝜈, 𝜎) is defined by  
 

F(x,s) = 0.7, F(x,t) = 0, F(y,s) = 0, F(y,t) = 0.6, 
 

then F is one-to-one and F(μ) [0.7,0.6]
[𝑠,𝑡]

= 𝜈. We fix r 

= 0.5 and 𝛼 = 0.2. First, we find all r-preopen sets 

in μ. Clearly, 0𝑋  and μ are r-preopen sets.  
 

Case 1. 0𝑆 ≠ 𝑈 ≤ (𝜇 − 𝑈1) [0.3,0.3]
[𝑠,𝑡]

. In this case, 

𝐼𝜏(𝐶𝜏(𝑈, 𝑟), 𝑟) = 𝐼𝜏(𝜇 − 𝑈1, 𝑟) = 0 ≱ 𝑈.  Hence, 

each U is not r-preopen.  
 

Case 2. 𝜇 ≠ 𝑈 ≰ (𝜇 − 𝑈1). Here, 𝐼𝜏(𝐶𝜏(𝑈, 𝑟), 𝑟) =

𝐼𝜏(𝜇, 𝑟) = 𝜇 ≥ 𝑈. Hence, each 𝑈 [𝑝,𝑞]
[𝑥,𝑦]

, is r-preopen, 

whenever p > 0.3 or q > 0.3.  

Similarly, we can verify that 0𝑆, 𝜈 and each 

𝑉 [𝑝,𝑞]
[𝑠,0]

 is r-preopen, where p > 0.3, q > 0.3. We claim 
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that F is 𝑞𝛼
𝑟 -pre-continuous. Let 𝑉 [𝑙,𝑚]

[𝑠,𝑡]
 be a 𝑞𝛼

𝑟 -

pre-neighborhood of F(𝑃𝑥
⋋) = 𝑃𝑠

⋋. Since 𝑉 [𝑙,𝑚]
[𝑠,𝑡]

 is 

r-preopen, we have l > 0.3 or m > 0.3. If we choose 

𝑈 [𝑝,𝑞]
[𝑥,𝑦]

 with p = l and q = m, then U(x) + ⋋ = l + ⋋ = 

V(s) + ⋋ > 𝜈 (s) + 𝛼 =1 > 0.9 = 𝜇(x) + 𝛼. Since U(x) 

> 0.3 or U(y) > 0.3, U is r-preopen. Therefore, U is 

a 𝑞𝛼
𝑟 -pre-neighborhood of 𝑃𝑥

⋋  such that 

F(𝑈) [𝑙,𝑚]
[𝑠,𝑡]

≤  𝑉. 

Let 𝑉 [𝑙,𝑚]
[𝑠,𝑡]

 be a 𝑞𝛼
𝑟 -pre-neighborhood of 

F(𝑃𝑦
𝜂

) =  𝑃𝑡
𝜂
. Since 𝑉 [𝑙,𝑚]

[𝑠,𝑡]
 is r-preopen, l > 0.3 or m 

> 0.3, we choose 𝑈 [𝑝,𝑞]
[𝑥,𝑦]

 with p = l and q = m so that 

U is a 𝑞𝛼
𝑟 -pre-neighborhood of 𝑃𝑦

𝜂
 such that 

F(𝑈) [𝑙,𝑚]
[𝑠,𝑡]

≤ 𝑉. 

Next, we claim that F(PClα(𝐴, r)) ≰ PClα(𝐴, 

r), for 𝐴 [0.6,0.5]
[𝑥,𝑦]

. Consider 𝑃𝑦
0.6 ∈ 𝜇. The possible r-

preopen sets of 𝑃𝑦
0.6 are K

[𝑙,𝑚]
[𝑥,𝑦]

, where l ∈ [0, 0.7] 

and m > 0.3 and J
[𝑙,𝑚]
[𝑥,𝑦]

, where l > 0.3 and m ∈ [0, 

0.6]. From the inequalities 
 

K(y) + A(y) > 0.3 + 0.5 > 𝜇(y) + 𝛼 
 

J(x) + A(x) > 0.3 + 0.6 = 0.9 = 𝜇(x) + 𝛼, 
 

we get that 𝑃𝑦
0.6 ∈ F(PClα(𝐴, r)). Clearly, we have 

𝑉 [0,0.41]
[𝑠,𝑡]

 is r-preopen and V(t) + 0.6 > 𝜈(t) + 𝛼. Since 

F(𝐴) [0.6,0.5]
[𝑠,𝑡]

, we have V(s) + F(A)(s) = 0 + 0.6 < 𝜈(s) 

+  𝛼  and V(t) + F(A)(t) <  𝜈 (t) +  𝛼 . Thus, 𝑃𝑦
0.6 ∉ 

PClα(F(𝐴), r).  

The following counterexample shows that the 

converse of Theorem 12 is not true.  
 

Counterexample 14. Let X = {x,y}, S = {s,t}. Define 

𝜇 [0.8,0.6]
[𝑥,𝑦]

∈ 𝐼𝑋 , 𝜈 [0.8,0.6]
[𝑠,𝑡]

∈ 𝐼𝑆 ,  𝑈1
[0.5,0.3]

[𝑥,𝑦]
∈ 𝒥𝜇 , and 

𝑉1
[0.4,0.3]

[𝑠,𝑡]
∈  𝒥𝜈. 

If τ : 𝒥𝜇 → 𝐼 and σ : 𝒥𝜈 → 𝐼 are respectively, de-

fined by 

𝜏(U) = {
1,           𝑈 = 0𝑋  or 𝜇
0.6,       𝑈 = 𝑈1          
0,      otherwise        

 

 

and 
 

σ(V)= {
1,            𝑉 = 0𝑆 or 𝜈,
0.5,        𝑉 =  𝑉1,        
0,        otherwise,     

 

 

Let the fuzzy proper function F : (𝜇, 𝜏) →
 (𝜈, 𝜎) be defined by  

F(x,s) = 0.8, F(x,t) = 0, F(y,s) = 0, F(y,t) = 0.6. 

We note that F is one-to-one and F(μ)
[0.8,0.6]

[𝑠,𝑡]
= 𝜈. 

Fix r = 0.5 and α = 0.2. First, we find all r-preopen 

sets in 𝜇. Clearly, 0𝑋  and 𝜇 are r-preopen sets. 
  

Case 1. 0𝑆 ≠ 𝑈 ≤ (𝜇 − 𝑈1) [0.3,0.3]
[𝑠,𝑡]

. In this case, 

𝐼𝜏(𝐶𝜏(𝑈, 𝑟), 𝑟) = 𝐼𝜏(𝜇 − 𝑈1, 𝑟) = 0 ≱ 𝑈.  Hence, 

each U is not r-preopen. 
 

Case 2. 𝜇 ≠ 𝑈 ≰ (𝜇 − 𝑈1). Now, 𝐼𝜏(𝐶𝜏(𝑈, 𝑟), 𝑟) =
𝐼𝜏(𝜇, 𝑟) = 𝜇 ≥ 𝑈. Hence, if p > 0.3 or q > 0.3, then 

𝑈 [𝑝,𝑞]
[𝑥,𝑦]

 is an r-preopen fuzzy set.  

Next, we find all r-preopen sets in 𝜈. Clearly, 0𝑆 

and 𝜈 are r-preopen sets.  
 

Case (i).  0𝑆 ≠ 𝑉 ≤ (𝜈 − 𝑉1) [0.4,0.3]
[𝑠,𝑡]

. In this case, 

𝐼𝜎(𝐶𝜎(𝑉, 𝑟), 𝑟) = 𝐼𝜎(𝜈 − 𝑉1, 𝑟) = 𝑉1 = 𝜈 − 𝑉1 ≥
𝑉.  Hence, each 𝑉 is 𝑟 − preopen. 
Case (ii). 𝜈 ≠ 𝑉 ≰ (𝜈 − 𝑉1).  Here, 

𝐼𝜎(𝐶𝜎(𝑉, 𝑟), 𝑟) = 𝐼𝜎(𝜈, 𝑟) = 𝜈 ≥ 𝑉 . Hence, each 

𝑉 [𝑝,𝑞]
[𝑠,𝑡]

 is r-preopen. 

Clearly, 𝑉 [0,0.3]
[𝑠,𝑡]

 an is r-preopen fuzzy subset 

in 𝒥𝜇 and from the inequality V(t) + 0.55 = 0.3 + 

0.55 > 0.8 = 𝜈(t) + 𝛼, we have V is a 𝑞𝛼
𝑟 -pre-neigh-

borhood of F(𝑃𝑦
0.55) =  𝑃𝑡

0.55. Using that the 𝑞𝛼
𝑟 -pre-

neighborhoods of 𝑃𝑦
0.55 are K

[𝑙,𝑚]
[𝑥,𝑦]

, where l ∈ [0, 1] 

and m > 0.3 and J
[𝑙,𝑚]
[𝑥,𝑦]

, where p > 0.3 and 0.3 ≥ q > 

0.25 and F(K)
[𝑙,𝑚]
[𝑥,𝑦]

≰ 𝑉, F(J)
[𝑙,𝑚]
[𝑥,𝑦]

≰ 𝑉, we conclude 

that F is not 𝑞𝛼
𝑟 -pre-continuous. We claim that 

F(PClα(𝐴, r))≤ PClα(F(𝐴) ,r), for every A ∈ 𝒥𝜇. Let 

A
[𝑙,𝑚]
[𝑥,𝑦]

.  

Case (a). l ≥ 0.7 or m ≥ 0.5. In this case, every r-

preopen set 𝑈 [𝑝,𝑞]
[𝑥,𝑦]

 is α-quasi coincident with A, 

where p > 0.3 or q > 0.3. Therefore, F(PClα(𝐴, r) = 

F(μ). Clearly, F(A)(s) = l ≥ 0.7 or F(A)(t) = m ≥ 0.5. 

Hence, PClα(F(𝐴), r) = 𝜈 = F(μ) = F(PClα(𝐴, r)).  

Case (b).l < 0.7 and m < 0.5. Clearly, A ≤ PClα(𝐴, 

r). Suppose that ⋋ > A(x) = l. We can choose a 𝑞𝛼
𝑟 -

pre-neighborhood 𝑈 [𝑝,𝑞]
[𝑥,𝑦]

 of 𝑃𝑥
⋋, where μ(x) – l > p 

> μ(x) – ⋋ and q > 0.3. Therefore, U is 𝑎𝛼
𝑟 -pre-

neighborhood of 𝑃𝑥
⋋but U�̅�αA[𝜇]. For any η > A(y) 

= m, we can choose a 𝑞𝛼
𝑟 -pre-neighborhood 𝑊 [𝑝,𝑞]

[𝑥,𝑦]
 

of 𝑃𝑦
𝜂
 where μ(y) – m > q > μ(y) – η and p > 0.3. 

Therefore, W is 𝑎𝛼
𝑟 -pre-neighborhood of 

𝑃𝑦
𝜂

 but 𝑊�̅�αA[𝜇]. Thus, PClα(𝐴, r) = A.  

Hence, F(PClα(𝐴, r)) = F(𝐴) ≤ PClα(F(𝐴), r). 

 

CONCLUSION 
 

Using different notions of fuzzy closure oper-

ators, we have introduced various notions of weaker 
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forms of continuities such as fuzzy weakly δ-conti-

nuity, fuzzy weakly δ-r1-continuity, fuzzy weakly δ-

r2-continuity, fuzzy weakly δ-r3-continuity, etc., and 

inter-relations among them are obtained completely. 

Further, we have introduced new notion of quasi co-

incidence namely α-quasi coincidence and then a 

fuzzy closure operator PClα is introduced. Using this 

fuzzy closure operator, 𝑞𝛼
𝑟 -pre-continuous fuzzy 

proper function is introduced and all properties of 

this function are obtained.  
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Во овој труд, воведуваме неколку поими за непрекинати фази  прави пресликувања, со користење на 

постоечките поими за операторите фази затворач и фази внатрешност, како што се 𝑅𝜏
𝑟 -затворач, 𝑅𝜏

𝑟 -

внатрешнос итн, и ги изнесуваме сите можни врски помеѓу тие типови на непрекинатости.  Понатаму ги 

воведуваме концептите за α-квази-коинциденија, 𝑞𝛼
𝑟 -пре-околина, 𝑞𝛼

𝑟 -пре-затворач и  𝑞𝛼
𝑟 -пре-непрекинати 

пресликувања во мазни фази тополошки простори и ги испитуваме еквивалентните услови за 𝑞𝛼
𝑟 -пре-

непрекинатост. 
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затворач; фази внатрешност 


