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In this paper we introduce various notions of continuous fuzzy proper functions by using the existing notions of
fuzzy closure and fuzzy interior operators like RI-closure, RI-interior, etc., and present all possible relations among
these types of continuities. Next, we introduce the concepts of a-quasi-coincidence, qj-pre-neighborhood, q;-pre-clo-
sure and qZ- pre-continuous function in smooth fuzzy topological spaces and investigate the equivalent conditions of

q;- pre-continuity.
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INTRODUCTION

Sostak [28] defined I-fuzzy topology as an ex-
tension of Chang’s fuzzy topology [2]. It has been
developed in many directions by many authors. For
example see [8, 16]. Ramadan [23] gave a similar
definition of fuzzy topology on a fuzzy set in
Sostak’s sense and called by the name "smooth fuzzy
topological space".

On the other hand, studying different forms of
continuous functions in topological space is an inter-
esting area of research which attracts many research-
ers. In the fuzzy context, after the introduction of
fuzzy proper function from a fuzzy set in to a fuzzy
set [1], several notions of continuous fuzzy proper
functions between Chang’s fuzzy topological spaces
are defined and their properties are discussed in [3].
The concepts of smooth fuzzy continuity, weakly
smooth fuzzy continuity, gn-weakly smooth fuzzy
continuity, (a,f)-weakly smooth fuzzy continuity of
a fuzzy proper function on smooth fuzzy topological
spaces and their inter-relations are investigated in [5,
23, 26, 27, 10].

Lee and Lee [19] introduced the notion of
fuzzy r-interior which is an extension of Chang’s
fuzzy interior. Using fuzzy r-interior, they define

fuzzy r-semiopen sets and fuzzy r-semicontinuous
maps which generalize fuzzy semiopen sets and
fuzzy semicontinuous maps in Chang’s fuzzy topol-
ogy, respectively. Some basic properties of fuzzy r-
semiopen sets and fuzzy r-semicontinuous maps are
investigated in [19]. In [22], the concepts of several
types of weak smooth compactness are introduced
and investigated some of their properties.

In [7, 20], the notions of fuzzy semicontinuity,
fuzzy y-continuity of a fuzzy proper functions, fuzzy
separation axioms, fuzzy connectedness and fuzzy
compactness are defined.

Ganguly and Saha [6] introduced the notions of
o-cluster points and #-cluster points in Chang’s fuzzy
topological spaces. Kim and Park [15] introduced o-
closure in Sostak’s fuzzy topological spaces. Kim and
Ko [13] introduced fuzzy super continuity, fuzzy o-
continuity, fuzzy almost continuity in the context of
Sostak’s fuzzy topological spaces. They proved that
fuzzy super continuity implies both fuzzy J-continu-
ity and fuzzy almost continuity. Similar works are dis-
cussed by various researchers, see [12, 14, 18, 21].

By using the existing notions of fuzzy closure
and fuzzy interior operators, we introduce the con-
cepts of fuzzy weakly §-continuity, fuzzy weakly -
r; -continuity, fuzzy weakly oJ-[r,q]i-continuity,
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fuzzy weakly 6-r,-continuity, fuzzy weakly 6-[r,q].-
continuity, fuzzy weakly o- r3 -continuity, fuzzy
weakly J-r,-continuity, fuzzy almost r;-continuity,
fuzzy almost [r,q]:- continuity, fuzzy almost r,-con-
tinuity, fuzzy almost [r,q].-continuity, fuzzy almost
r3 -continuity and fuzzy almost r,-continuity and
discuss the inter-relations among them.

Further, by introducing the notions a-quasi-
coincidence, g, -pre-neighborhood, g7, -pre-closure
and gl -pre-continuity, we investigate the relations
between g, - pre-continuity and the property
F(PCl (4, r)) < PCl,(F(A),r), for every A < u in
smooth fuzzy topological spaces.

PRELIMINARIES

Let X, S be non-empty sets. We denote by I,
Iy, 1%, 0y, u and v respectively the unit interval [0,
1], the interval [0, 1], the set of all fuzzy subsets of
X, the zero function on X, a fixed fuzzy subset of X
and a fixed fuzzy subset of S. For X={x,, x5, .....,
xpyand Ai € I, i € {1,2,...,n}, we denote the fuzzy

subset x of X which maps x; to A for every i =
1,2,...,n by ﬂM A fuzzy point [15] in X is
[%1, X, %]

defined byP2(t) = {& £ =*where0<i<1.By

if t*x’
P} € 1 we mean that 4 < u (x).

Definition 1 [23]: A smooth fuzzy topology on a

fuzzy set u€1* isamapt:J, ={U€IX:U<

u} — I, satisfying the following axioms:

1L «0x) =t(w =1,

2. (A1 Ao) = T(A)AT(A), Y AL Ay € Jy,

3. ©(Vier4i) = Niert(4;) for every
(Ai) iEI"g tju-

The pair (u,7) is called a smooth fuzzy topological
space.

A fuzzy subset U € J, is said to be fuzzy
open if t(U) > 0 and fuzzy closed if z(x — U) > 0.

Definition 2 [1]: LetU,V € J, are said to be quasi-
coincident referred to x (written as UqV[u]) if there
exists x € X such that U(x)+V(xX)>u (x). If U is not
quasi-coincident with V, then we write, UgV[u].

family

A fuzzy set U € J,, is called a g-neighbor-
hood of a fuzzy point P2 in u if PAqU[u] and t(U)
> 0.

Definition 3[1]: Let € IXand v € IS. A non-zero
fuzzy subset F of X € S is said to be a fuzzy proper
function from u to v if

1. F(x,s) < min{u(x), v(s)}, V(x,s) € X X S,

2. for each x € X with u(x)>0, there exists a unique
So € S such that F(X, s¢)= u(x) and F(x,s) =0
if s# sg.

Definition 4 [1]: Let F be a fuzzy proper function
fromutov. IfU € J, and Ve J,, then F(U):S - |
and F (V) : X > I are defined by

(F(U))(s)=sup {F(x,s) AU (x) : XE X},Vs €S,
(FYV)(X) =sup {F(x,s) AV (S):s € S},Vx € X.

The inverse image of a fuzzy subset V under a
fuzzy proper function F can be easily obtained as (F
L(V))(X) = u(X) A V(S), where s € S is the unique ele-
ment such that F(x,s)=p(x).

Definition 5 [5]: A fuzzy proper function F:u— v is
said to be injective (or one-to-one) if F(x1, s) > 0 and
F(x2, s) > 0, for some x1, X2 € X and s € S, then x; =
X2.

Definition 6 [4]: Let (u, 7) be a smooth fuzzy topo-

logical space. Forr € I, A € J,,,

e CidyxX Iy - J, is defined by C(A, 1) =
AKE J, A <K, t(u-K) =7},

o I: Juxly—> J, is defined by I.(A71)=
V{S €EJuS <At(S)=r}

Definition 7 (Cf. [18]): Let (u,r) be smooth fuzzy

topological space, U€ J,, andr € I,. Then

» Uiscalled fuzzy r-preopen if U< I,.(C.(U,7),1),

« U is called fuzzy r-preclosed if U >
C.(I.(U,r),1).

Definition 8 [13]: Let («,7) be a smooth fuzzy topo-
logical space and let A€ J,, r € I,. Then,

« A is called a QF -neighborhood of P2 if
PAqA[u] with z(A)>r,

« A is called a RT -neighborhood of P2 if
PrgA[u]with A = I.(C,(A,1),7).

Definition 9 [11]: Let («,7) be a smooth fuzzy topo-

logical space and let A € J,, r € I,. Then, we de-

fine,

» Smooth fuzzy R} -closure of A by

DA, 1) =V{P2 € u: C,(U,r)qA[ul,V RI— neigh-
borhood U of P2},

« Smooth fuzzy R -interior of A by

I (A, 1) =V{KeJg,: A =2 C(Kn)K=
I; (C;(K,7),1)}.

Theorem 1 [11]: Let (u,7) be a smooth fuzzy topo-
logical space. For A € J, andr € I, then

Dt (Ar)MK € Ju:A <L (K,7),K =
CT(IT(K'r)IT)}'
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Definition 10 (Cf. [13]): Let (4,z) and (v,0) be two
smooth fuzzy topological spaces and F:y — v be a
fuzzy proper function. Then, F is called fuzzy almost
continuous or FAC if for every RZ-neighborhood V
of F(P}), there exists an QT-neighborhood U of P2
such that F(U) < V.

Theorem 2 [9]: Let F:u — v be a fuzzy proper func-
tion such that v = F(u). If F is one-to-one, then F (v
~V)=u—-FXV),VVEJ,

FUZZY WEAKLY §-CONTINUOUS
AND FUZZY ALMOST CONTINUOUS
FUNCTIONS

Definition 11: Let (u,7) and (v,0) be smooth fuzzy
topological spaces, F:u — vbe a fuzzy proper func-
tionandr, q € I, be fixed. Then, F is called

(1) fuzzy weakly &-continuous or FW §-C if for
every RZ-neighborhood V of F(P2), there exists an
RT-neighborhood U of P} such that F(Ct(U,r)) <
v,

(2) fuzzy weakly &-r;-continuous or FW -1, -C if
F(D: (A, 1)< Da(F(A), 1), VAE J,,

(3) fuzzy weakly o-[r,q]i-continuityor FW 6-[r,q]:1-C
if
F(DT (Aa r))S ]D)U (F(A)1 q)1 VA S Jy;
(4) fuzzy weakly §-r,-continuous or FW §-r,-C if
D(F*(V), r) < FYDL(V,r)), YV €,

(5) fuzzy weakly o-[r,g].-continuous or FW 4-[r,q]1-
Cif

DAF*(V), 1) SF YDAV, q), YV € J,,,
(6) fuzzy weakly &-r5-continuous or FW §-r5-C if
DAF*(V), 1) =F V), YV € J, with V= D,(V,r),

(7) fuzzy weakly §-r,-continuous or FW §-r,-C if
Du—FYV), 1) =p—FV), vV € J, with V=
IV, ).

Theorem 3 Let F : (u,7) = (v,0) be a one-to-one
fuzzy proper function with v=F(u). If F is fuzzy
weakly &-continuous, then F is fuzzy weakly &-r;-
continuous

Proof. Suppose that there exist A€ J, and r € I
such that

F(DAA, 1)(S) > Dg(F(A), 1)(s),

for some s € S. Then, there exists x € X such that
F(x,s) > 0. Since F is one-to-one and F(u) = v, we
have F(D; (A, nN)s) = D (A KX >
D, (F(A),r)(s). Now we choose a real number 7,

such that D.(A, 1))(X) >n > D,(F(A), r)(s). Since
P ¢ D,(F(A),r), there existsan R-neighborhood
V of F(P])= P such that C.(V,r)qF(A)[V]
which implies that F(A) < v — C.(V,r). Since F is
fuzzy weakly & -continuous, there exists an R -
neighborhood U of P such that F(C,(U,r) <V <
C,(V,r). Thus, F(A)< v — F(C(U,)). Using the
facts that F is one-to-one and F(i)=v and using The-
orem 2, we get

A<FYFA) < F'v-F(C,(U,1))
= u— FUF(CWU, M) < pu—CU,7).

Therefore, A gC,(U,r)[u] and P & D.(A),7)
which implies that P’ = F(P) ¢ F(D.(4,1)),
which is a contradiction to F(D,;(4,7)) > n.
Hence, it follows that F(D,(4,7)) < D,(F(A), 7).
The statement of the above theorem is not true
when F is not one-to-one or F(«)# v. The following
counterexamples justify our statement.
0.8,0.7]
[x,]

IXV[(EB?]EI U, %493 e g, and Vl[os"t? € J,.

We definez:J, - Iando: J, —> I by

Counterexample 1: Let X ={x,3},5 = {s,t}, u{[ €

1, U=0x,oru
T(U) = {0.7, u=u0,,
0, otherwise
and
1, V=05 orv
o(V)= { 0.6, Vv=1V,,
0, otherwise.

If the fuzzy proper function F :
(v, o) is defined by

F(x,5)=0.8, F(x,t) = 0, F(y,s) = 0.7, F(y,t) = 0,

(w, 7) =

Then F is not one-to-one and F(,u)[0 80T =y We fix

r = 0.5. For P € u and for the RT nelghborhood
V; of F(R"), we can choose U; asan RZ-neighbor-

hood of P} satisfying F(C,(U;, 7)) [°S4t§’ = V,.For
v we find p such that F(C.(i,7)) = v. Thus F is
fuzzy weakly §-continuous.

Consider the fuzzy point P*> € p and the

fuzzy set AE)C;‘” € Jy. IfU€e J, is such that U
=I.(C,(U,7),r), thenU = 0y or p or U; and both
are the R} ods PY*5.Here, C;(Uy,7),qA[u]and
C.(u, 1), qA[u]. Therefore, P)*> € D,(4,7) and
F(P)*) = P*** e F(D,(A,r) . Since, Vi(s)+
0.45 > 0.8 = v(s) and I,(Cy(Vy,7), 1) =

¢, (v 04 1) = v,
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Vy is RY -neighborhood of PY4>. We note that

F(A) [(ffé?] and F(A) gC,(V,7)[v] and hence

P05 ¢ D, (F(A),r). Therefore F is not fuzzy
weakly &-r;-continuous.

Counterexample 2: Let X = {xy}S={st}

[0.9,0.8] X 11,1, S 0.4,0.3
O erviler, u4%e g, and

nEC € v

We definez:J, — Iando: J, — I by

1, U=0yx orpu
7(U) = {0.6, u=U,,

0, otherwise
and

1, V =05 orv
o(V) = {0.5, V=1,

0, otherwise.

Let the fuzzy proper function F :(u,7) — (v,0) be
defined by

F(x,s) = 0.9, F(x,t) = 0, F(y,s) = 0, F(y,t) = 0.8.
Then, F(ﬂ)[o'[?‘t’]s] # v. If r = 0.5, and for the R}-
neighborhood V; of F (Pl"), we can fine U; as are-
quired RZ-neighborhood of B € w. Indeed, we first

note that F(C,(Uy,7)) [Oi'?f] = V,. Since the only

R%-neighborhoods of F(P") are V; and v, it follows
that F is fuzzy weakly §-continuous.
[0.04]

H 0.55
Consider P;~> € u and A[x'y] € Ju

Since PY>5qUy[u] and P->>qu[u], U; and yu are
the R} -neighborhoods of A)>>.  Since
C:(Uy,7),qA[n) and Cr(u,7),qA[u] , we have
PP e D(Ar) and F( P))= P)>€
D, (A4, 7). Using

Vi(t)+0.55 >1= v(t) and
Is(C(Vy,m),m) = Iy ((V— ) [0'[??]'5] ,r) =V,

we get that V; is an RT-neighborhood of P25, But

F (A )[?fé(])] gC,(V,r) [v] implies that P25 ¢

D, (F(A4),1).

Theorem 4: Let F: (u,7) —= (v,0) be a fuzzy
proper function. If (a) F is fuzzy weakly &-r;-contin-
uous, (b) F is fuzzy weakly &-r,-continuous, (c) F is
fuzzy weakly &-r3;-continuous, then (a)= b)= (c).
Proof is straightforward.
Theorem 5: Let F: (u,t) — (v, o) be a one-to-one
fuzzy proper function with v=F(u). If F is fuzzy
weakly §-r3-continuous, then F is §-r,-continuous.
Proof. Let Ve g, withV =1,(V,r). Then,

v—-V=v-I,(V,r) = D,(v—V,r). By using the
hypothesis, we get D, (FX(v — V), r) = Fi(v — V).
Since F is one-to-one and v = F(u) and by Theorem
2, we have F?'(»-V) = pu— FYV). There-
fore, D (u —F*(V), r) = u— F1V). O
The statement of the above theorem is not true
when F is not one-to-one or F(u)# v. The following
counterexamples justify our statement.

Counterexample 3: Let X ={x,y},S = {s, t},. We
define

#{[0.8,0.6] e1X, y1080 g s 1 [0.4+——04+—]

[x.y] [s,t] [x,y] '
wheren=1,2,... and V; [?'545’] € JyIfe:d,~1
ando: J, — I are defined by

1, U=0yorpu
(V) = {0.6, U=U,¥Yn or VU,,
0, otherwise
and
1, V =05 orv
o(V) = {0.4, u=1,,
0, otherwise

then (u,t) and (v, o) are smooth fuzzy topological
spaces. Let the fuzzy proper function F :(u,7) -
(v, o) be defined by

F(x,s) = 0.8, F(x,t) =0, F(y,s) = 0.6, F(y,t) = 0.
We fix r = 0.4. Since C,(Vy,r)= V; =
I,(Vy,7)and C,(U,, 1) = U, = I,(Uy, 1), n = 1,
2, ..., we get Dgy(Vy,m) =V, FHV)LH <
I.(U,, 1), and C,(I.(U,,1),7)= U,. Therefore,
D, (F( Vy),r) = (AU o = FA( 1) and

[x.y]
hence F is fuzzy weakly §-r3-continuous.

We note that I,(V;,7) = V;and D (u —F
W) 02,y = AU, # i =F(Vy). Thus, F is
not fuzzy weakly §-r,-continuous.

Counterexample 4: Let X ={X, y}, S={s, t}. Define

[0.8,0.6] X . [0.8,08]
the  fuzzy  subsets u{ ey el yl0tle
1 1
’,u, [°4+n+i;’3']4+m], where n = 1,2, ... and
A [0'[‘5*'2]'4]. Letz:J, > lando: J, - I be defined
by
1, U=0yo0ru
7(U) = 0.6, U=U,¥vn or VU,,
0, otherwise
and
1, V =05 orv
sV)=]05 U=V,
0, otherwise

IfF:(u,7) — (v,o0)isdefined by
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F(x,s) = 0.8, F(x,t) =0, F(y,s) =0, F(y,t) =0,

Then F is one-to-one and F(u) [0'[2'?]'6] + v. We fix
r=0.5. From C,(Vy,r)=V; = I,(Vy,7r) =V, we
have D,(V;,r) =V, . Since C.(U,1)= U, =
I;(Uy,1),n=12,..., we get that

Fav) P50 < L(Un, 1)

and
Co(I;(Up,7),7) = Up.
Therefore, D, (FY V), 7)) =
(AU 9 = FA(V;) and hence F is fuzzy

weakly & -r5-continuous. From the observations,
I;,(Vr)=V; and D, ( p— F'( V) r)=
AU, #u—F*V,;), we conclude that F is not fuzzy
weakly &-r,-continuous.

The following counterexample shows that fuzzy
weakly & -r, -continuous function is not a fuzzy
weakly &-continuous function.

Counterexample 5: Let X ={x, v}, S = {s, t}. De-
fine #{[0'8’0'7] € ]X,V [0.8,0.7] e’ and Vl [0.4,0.3] €

[x,y] [s,t] [s.t]
dv
Ifz:J, -1 ando: J, — I are defined by
_ (1, U=0y orpu
dU) = {O, otherwise
and
1, V=05 orv
o(V) = { 05, V=1V,
0, otherwise,

then (u, 1) and (v, o) are smooth fuzzy topological
spaces. Let the fuzzy proper function F : (u,7) -
(v, o) be defined by

F(x,s) = 0.8, F(x,t) =0, F(y,s) =0, F(y,t) = 0.7.
Fix r=05.If I,(C,(V,r),r) =V, then V = 05 or

V=vyorV=V,.ButC, ((v -V [0-[‘;'?]-4],r) =
implies that I,(Vy,r) = 0. Since D, (u —F *(V), r)
= u —F}(V), for every V with 1,(V,r) =V, we get
that F is fuzzy weakly §-r,-continuous.

Next, we claim that F is not fuzzy weakly &-
continuous. Since F (PY*%) = P?*°qV;[v] and
1,(C,(V,7r),r) =V, V; is an R} -neighborhood of
PP*5. The only R7-neighborhood of Py**is p, for
which we have F(C,(u, 1)) = F(u) £ V;. Hence,
our claim holds.

The proof of the following theorem is straight-
forward.

Theorem 6: Letr,q€e I, and F :(1, 7) = (v, 0).

1. Ifr <qgand if F is fuzzy weakly §-r;-continuous,
then F is fuzzy weakly &-[r, q]-continuous.

2. Ifg<randifF: (1) = (v,0) is fuzzy weakly
6-[r, q];-continuous, then F is fuzzy weakly &-r-
continuous or F is fuzzy weakly &§-g;-continuous.

3. Ifr<gandif F: (1) = (v,0) is fuzzy weakly
6 - r, -continuous, then F is fuzzy weakly

6-[r, q],-continuous.

4. Ifg<randif F: (u, 1) = (v,0) is fuzzy weakly
6-[r, q],-continuous, then F is fuzzy weakly &-
r,-continuous and F is fuzzy weakly §-g,-contin-
uous.

Definition 12: Let (u, 7), (v, o) be smooth fuzzy top-

ological spaces, F: u, — v, be afuzzy proper func-

tionandr, g € I, be fixed. Then, F is called

(1) fuzzy almost r;-continuous or FAS§-r;-C if
F(CT(A' T)) S ]D)G'(F(A)l r)l VA € (7[11

(2) fuzzy almost [r, q],-continuous or FAS-[r, q];-C
if

F(C,(A,r)) <D,(F(A),q),VA € Jus

(3) fuzzy almost r,-continuous or FAS-r,-C if

C.(F7X(V),r) < F Y (D,(V,7)),VV € g,

(4) fuzzy almost [r, q],-continuous or FAS-[r, q],-
Cif

C(FW),r) <F' DV, ), vV € Jy,

(5) fuzzy almost r3-continuous or FAS-r5-C if

C.(F7X(V),r) < F~Y(V) for each V € J, with
V=D, (V,r),

(6) fuzzy almost r,-continuous or FAS-r,-C if
C(u—FtWV),r)=u—-F*(V)VV €],
withV =1,(V,r).

Theorem 7: Let F : (u,t) = (v, o) be a one-to-one
fuzzy proper function with v = F(u). If F is fuzzy al-
most continuous, then F is fuzzy almost r;-continu-
ous.

Since the proof of this theorem is similar to that of
Theorem 4.7 in [11], we prefer to omit the details.
The statement of the above theorem is not true
when F is not one-to-one F(u) # v. The following
counterexamples justify our statement.

Counterexample 6: Let X = {x,y}, S = {s,t}. If de-

. [0.7,05] ~ ;X .,[0.7,0] = 1S 77 [0.3,0.3]
fine #{ o € vilter, v 00 e g, and

[0.3,0]
Vl [5.t] € Jv

We define smooth fuzzy topologies T on u
and o on v by

1, U=0yo0ru
t(U) =4 0.6, U=1U;
0, otherwise

Ipunosu, O00. tipup. matli. 6uottiex. nayku, MAHY, 36 (2), 153-164 (2015)
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and

1, V =05 o0orv
G(V) = V= Vl'

0, otherwise.

Let the fuzzy proper function F : (,7) -
(v, o) be defined by

F(x,s) = 0.7, F(x,t) =0, F(y,s) = 0.5, F(y,t) = 0.

Then, F is not one-to-one and F(u) [(E:i?] =v. We

fix r = 0.5. For the RY -neighborhood V; of any
F(P), there exists U; asa QI-neighborhood of P

such that F(U,) [([)'532?] = V;. For v, we choose u as

a Qr-neighborhood Pl’7 such that F(u) = v. Hence
F is fuzzy almost continuous.

Since P)**qUy[u] and P)**qu[u], U; and
u are the Q7 -neighborhoods PY*°. Clearly, we
have P)*° € C; (A1) and F( B)*) = Pp>* =
F(C.(A,1)). Since,

Vi(s) +0.45> 0.7 =v(s)and I,(C,(Vy,7),1) =

Co((v =) 01y =1,

we get that V; is an RZ-neighborhood of P24>.

Since F(A) [‘[’j;])]qca(v,r)[v], we have PO45 ¢

D,(F(A),r) and hence F is not fuzzy almost ry-
continuous.

Counterexample 7: Let X ={x,y}, S = {s,t}. De-

. [0.7,0.6] ¢ ;X |,[0.7,08]
fine the fuzzy subsets ,Lt{ eyl er, 5 €
S [0.3,0.3] [0.4,0.4]

r,u; Cey] € J,, and V; st € Iv-

Ifz:J,—>1Tand o : J, — I are respectively, de-
fined by

1, U=0yoru
T(U) = 4 0.6, Uu=1U,

0, otherwise
and

1, V =05 orv
o(V)=10.5, V=1,

0, otherwise.

then (u, ) and (v, o) are smooth fuzzy topological
spaces. If F: (u,7) = (v, 0) is defined by

F(x,s) = 0.7, F(x,t) =0, F(y,s) =0, F(y,t) = 0.6,

then as in the previous counterexample, we can ver-
ify that F is one-to-one, F(u) [0[7 ?]6] +v and F is
fuzzy almost continuous.

Next, we claim that F( C.(4,1r)) £
D, (F(4),7), forA[fx"yj] € J,. Since P*1qU; [u]
andP)*!qu[u], we get that U; and x are the Q7 -

Contributions, Sec. Nat. Math. Biotech.

neighborhoods P)*1. We have, Ui(y) + A(y) > 0.6
= u(y), B?* € C(A4,r)and F(P)*) = PP4t =
F(C.(A,7)).Using Vi(t) + 0.41 > 0.8 = v(t) and
I,(C,(Vy,7), ) = Vi, we obtain that V; is an R-

neighborhood of P41, However, F(4) [? Ot‘” is not

quasi-coincident with C,(V,r) in v. Therefore, F is
not fuzzy almost rl—continuous.

Theorem 8: LetF: (u, ) — (v, o) be a fuzzy proper
function. If (a) F is fuzzy almost ri-continuous, (b) F
is fuzzy almost rz-continuous, (c) F is fuzzy almost
rs-continuous, then (a) = (b) = (c).

The proof of the theorem is straightforward.

Theorem 9: Let F : (u,7) — (v, o) be a one-to-one
fuzzy proper function with v = F(w). If F is fuzzy al-
most rz-continuous, then F is almost rs-continuous.

Proof. If V€ g, issuch thatV = 1,(V,r), then v —
V=v-I1,V,r)= D,(v-V,r). Using hypothesis,
we get C.(F~1(v-V),r) = F~1(v-V).Since F is
one-to-one and v = F(u),using Theorem 2, we
have F~1(v-V) = pu— F~1(V). Therefore,

Ccu—F'WV),r)=n- F1(V).o

The statement of the above theorem is not true when
F is not one-to-one or F(u) # v. The following
counterexamples justify our statement.

Counterexample 8: Let X = {x, y}, S = {s, t}. We
: [0.8,0.6] X ., [0.8,0] S [0.4,0.2]
define, u SR, el U, eyl € Ju

[x¥] T [st]
0.4,0

Vl[[st] € J,.
We definez:J, -1 ando: J, — I by

1, U=0y orpu
t(U) = {0.6, U=1U;

0, otherwise
and

1, V =05 orv,
o(V)= {0.4, U=V,

0, otherwise.

Let the fuzzy proper function F:(p,7) —
(v, o) be defined by

F(x,s) = 0.8, F(x,t) =0, F(y,s) = 0.6, F(y,t) = 0.
We fix r = 04. Since D,(V;,r)=V; and
I,(V1,7) =Vy, we obtain that F*(13)"] [0404]

C; (u— Uy ). Hence, F is fuzzy almost rs- contlnu-

ous. But
) [0 0. 2]

1) = p—U
#_F_I(Vﬂ
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implies that F is not fuzzy almost rs-continuous.

Counterexample 9: Let X = {x, y}, S = {s, t},

[0.8,0.6] X . [1,0.8] s [0.3,0.2] [0.5,0.4]
oy €10V €0 ULy Vi ey
Ifz:J,—1 and 6 : J, > I are respectively, de-
fined by

1, U=0yx oru
T(U) = 30.5, U=1U;

0, otherwise
and

1, V =05 orv,
o(V) =104, U=V,

0, otherwise.

then (u,t) and (v, g) are smooth fuzzy topological
spaces. If F:(u,7) = (v, o) is defined by

F(x,s) = 0.8, F(x,t) =0, F(y,s) =0, F(y,t) = 0.6,
then F( w)[®®% %y We fix r = 04. Since

[s.t]
Co(Vy,r)= "V, and [;(V;,7)=V; we have

D, (V;,7) = V;. Using F1(V;) [0['5:;’/']4‘] =u—U, =

C; (F~Y(vy,1)), we get that F is fuzzy almost rs-
continuous. From I,(V;,r) =V, and C,(u—
Frw),r)y=u—-U #u—F (V) , we con-
clude that F is not fuzzy almost r4-fuzzy continuous.

The following counterexample shows that F is
fuzzy almost rs-continuous but F is not fuzzy almost
continuous.

Counterexample 10: Let X = {x,y},S={s, t}.

Define [0[';"3']7] erXv [0'[2'?]'7] €IS,

and V, [0'[‘;:?]'3] € J,.

Ifr:J,—1and o : J, — I are respectively, de-
fined by

(1, U=0yo0ryu,
dU) = {0, otherv;(ise
and

1, V =05o0rv,
o(V) = {0.5, V=1,
0, otherwise,

then (u,t) and (v, o) are smooth fuzzy topological
spaces. We define a fuzzy proper function F :
(u,v) = (v,0) by F(x,5) = 0.8, F(x,t) =0, F(y,s) =
0, F(y,t) =0.7. If r = 0.5, then 1,(V;,7) = 05 and
hence F is fuzzy almost rs-continuous.

Clearly, Vi is an RZ -neighborhood of
F(PY*%) = P)*> and the only Q7-neighborhood of
PY*5 is p. Since F(u) <V, we get that F is not
fuzzy almost continuous.

The proof of the following theorem is obvious.

Theorem 10: Letr,q€ I and F : (u,7) = (v,0).

1. If r < g and if F is fuzzy almost ri-continuous,
then F is fuzzy almost [r,q]:-continuous.

2. Ifg<randifF: (u,1) = (v,0)is fuzzy almost
[r,q]i-continuous, then F is fuzzy almost r;-con-
tinuous and fuzzy almost gi continuous.

3. Ifr<gandifF: (ut) = (v,0) is fuzzy almost
r.-continuous, then F is fuzzy almost [r,q].-con-
tinuous.

4. Ifg<randif F: (u,7) = (v, o) is fuzzy almost
[r,g]z-continuous, then F is fuzzy almost r,-con-
tinuous and F is fuzzy almost g.-continuous.

The results obtained in this section are summarized

in the following implication diagram.

FWé-[r,qi-C FWo-[r,qla = C
_ (@>rf) (ba<r) (g>rf) (bag<r)
Fwvsc = FW-r-C — FTWVS-ro-C
i | v
FWo-rg-C 1, o= FWo-rs-C
FA-[r.q),-C FA-[r,q|-C
(g=r1f) Ug<r) (g>rf) Gg<r)
- 1-1, F(u)=v .
FAC L FA-ry-C — F Ay
¥ N )
FAry-C -1, FGo=r FA-pyC

FUZZY q;-PRE-CLOSURE AND FUZZY
q,-PRE-CONTINUOUS MAPS

Definition 13: We say that U, V € J,, are said to

be a-quasi-coincident referred to u [written as
Uq.V[u]] if there exists x € X such that U(x) + V(x)

> u (X) + a. If U is not a-quasi coincident with V,
then we write Ug,V[u].

Definition 14: A fuzzy set U € J,, is called a fuzzy
qy -pre-neighborhood of a fuzzy point B> in u if
P>qa Ulu] and U is r-preopen.
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Definition 15: A fuzzy proper function F: u = v is
said to be fuzzy qr-pre-continuous if for every qr-
pre-neighborhood V of F(P>), there exists a qJ-
pre-neighborhood U of P> such that F(U)<V.

Definition 16: Let (u, t) be a smooth fuzzy topolog-
ical space and A€ J,. Then the fuzzy q-pre-clo-
sure PCl,(A, r) of A is defined as follows:

V {P":1Ug.Aly]

for every ql-pre-neighborhood U of P>}

Theorem 11: Let (u, t) be a smooth fuzzy topologi-
cal space. ForA,B€ J,, r € I, and a € |, this clo-
sure operator PCI, satisfies the following proper-
ties:

(1) PCl.(0x,7) = Oy,

(2) A<PCI.(A,7),

(3) PClu(A, ) < PCly(B,r) if A<B,

(4) PClu(A,7) vV PCl«(B,1) = PCl(A VB, ),

(5) PCI.(AAB, r) <PCly(A,7) APCI(AV B, ),

(6) PCl, (PCl.(A,1),r) = PClo (4, 1).

Proof.

1. Clearly, PCl(0x,7) = Oy.

2. Let P> € A andUbea g} -pre-neighborhood of
P>. Then, A(x) > xand U(x) + X u(x) + a. There-
fore, A(X) + U(X) > x+U(X) > u(x) + a. Thus,
Aq,U[u] and hence, P> € PCl,(4,7).

3. LetA<B.Let P> € PCl,(A,7) and U be a qf-
pre-neighborhood of P>. Then, Ug.A[x]. Since
Ug.A[u] and A < B, there exists y € X such that
U(y) + B(y) > U(y) + A(y) > u(y) + a, which im-
plies that P> € PCl,(B,r). Thus, PCl,(A,1) <
PCl.(B,1).

4. From (3), we get PCl(A,r) vV PCl(B,r) <
PCl(AV B, ). If B> € PCl,(AVB,r)and U is a
qL-pre-neighborhood of P, then Ug.(AVB)[x].
If Ug.Alx] and Ug,B[y], then U + A < u+a and
U + B <u + a. Hence, Ug.(A V B)[x], which is a
contradiction.  Therefore, PCl.( A,r) V
PCl.(B,r) =PCIl,(AV B,r).

5. By (3), we have PCl,(A A B, r) <PCl,(4,r) and
PCl.(A A B, r) < PCly(B,r). Thus, PCl.(A A B,
r)<PCl(A,r) APClB,r).

6. Again by using (3), we get PCl,(4,7) < PCl,
(PClu(A, 1), 1). If P> € PCI(PCl.(A,7), r) and
Uisa gl -pre-neighborhood of P, then we have
Uq.PCl.(A4, r)[u]. Thererfore, we can find s€ S
such that U(s) + PCI(A, r) (S)>u(s) + a. If 5 =
PCl.(A, 1) (s), then P'q,U[u] and P, € PCl,(A,
r). Therefore, Uq. A[u] and hence P> €
PCI.(A,r). m

The following counterexample shows that the equal-

ity does not hold in (5).

Counterexample 11: Let X = {x,y}, u[o['jg']s] €
X [0.3,0.3]
%, U; [xy] € Ju

1, U=0x oru
Definez:J, -1 by 7(U)=40.6, U=1U,

0, otherwise

We fix « = 0.1, r = 0.5, Al04041 3nq gl003])
[x.y] [x,v]

Casel. Oy # U < (u—"U,) [0[';'3']2]. In this case,
I‘L’(C‘L'(Ulr)lr) = I‘l:(.u - Ul,T') =0x 2U.

Case 2. u + U £ u— U;. Here,
LW, r),r) =Lur)=p=U.

If U € J, issuchthat U(x) >0.3 or U(y) > 0.2, then
U is r-pre-open. Then, the possible g, -pre-neigh-

borhoods of P are KIE™ \where | > 0.3, 0.2>m
[x.¥]

>0.1 and JB{’;} where | € [0,0.6], m > 0.2. The ine-
qualities

K(X)+A(X)>03+04=07=06+0.1=uX)+a
J(y) +A(y)> 02+04=06=05+0.1=pu(y) +a,

imply that P> € PCI(A, r). Clearly, P> €
PCl,(B, r) and hence P € PCI,(A, r) A PCl4(B, ).

We note that K[O'?i'g']w] is a g%-pre-neighborhood

of BY°. But, K(x) + (AAB)(x) =0.35+0=0.35<
0.7 = u(x) + e and K(y) + (A AB)(y) =0.15+ 0.4 =
0.55 < 0.6 = u(y) + o imply that P> & PCI.(A A B,

r).

Theorem 12: LetF : (i, 7) = (v, o) be a one -to-one
fuzzy proper function with v = F(u). If F is fuzzy
ql-pre-continuous, then F(PCl.(A, ) <PCl,(F(A),
r), forevery A€ J,,.

Proof. Suppose that P> € J, is such that P> ¢
PCl.(F (A), r). Since F(u)(s) =v(s) > » > 0, there
exists x € X such that F(x,s) = u(x) and F(P) = B>.
On the other hand, there exists a qg-pre-neighbor-
hood V of F(P) such that Vg.F(A)[v]. Therefore,
we get V(s) + x > v(s) +aand V + F(A) <v + a.
Since F is g} -pre-continuous, there exists a qj,-pre-
neighborhood U of P> such that F(U) < V. Since F
is one-to-one and F(u)=v, we get U(X) + A(X) <
FU)(s) + F(A)(S) < V(s) + F(A)(S) < v(s) + a = u(X)
+ a. Therefore, Ug,Alu] and F(PY) € F(PCl.(4,r)).
Hence, F(PCI.(4, r)) <PCl,(F(A), r), forevery A€
du-

The statement of the above theorem fails to be
true when F is not one-to-one and F(x) # v. The fol-
lowing counterexamples justify our statement.
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Counterexample 12: Let X = {x,y}, S = {s,t}. De-

fine #[0[53]5] erx, [‘Eft?] e’ u, [0[-;’:3-]3] €,

and V1 [S't] le Iy

Ifz:J,—>1 and 6 : J, > I are respectively, de-
fined by

1, U=0yx oru
t(U) = {0.6, U=1U;

0, otherwise
and

1, V =0s0rv,
o(V) = {0.5, V=1,

0, otherwise,

then (u,7) and (v, o)are smooth fuzzy topological
spaces. If F: (u,t) = (v,0) is defined by

F(x,s) = 0.6, F(x,t) =0, F(y,s) = 0.5, F(y,t) =0,

then F is not one-to-one and F(,u)[‘ffé?] =v.Fixr=

0.5and a = 0.1. First, we find all r-preopen sets in x
and v. Clearly, Oy, u are r-preopen sets.

Case 1. 0 # U < (u—Uy) [0'[35"3]'2]. In this case,

I,(C,(U,r),r)y=1I1,(u—U;,r) =0 % U.Hence, ,
each U is not r-preopen.

Case 2. u # U £ (u—U;). Here,

1.(C,(U,r), ) =1.(ur) =u=U. Hence, U E‘;g}
is r-preopen, whenever p > 0.3 or g > 0.2. Next we
find all r-preopen sets in v. Clearly, Og, v are r-
preopen sets.

Case (i). 0 #V < (v

1,(Cs(V, r),T) = Io(v —
each V is not r-preopen.

-V) [?'jé(])]- In this case,

Vi,vr)=0%V. Hence,

Case (ii). vEV £ W =1). Here,
Io(C(V,1),7) =I5(v,T) =v = V. Hence, V[[I;g]]

is r-preopen, where p > 0.2. We claim that F is g7,-
pre-continuous. Clearly, v is a g, -pre-neighbor-
hood of both F(P;*) and F(Py" ). For v, we choose u

as a required gg-pre-neighborhood of both P, PJ?

such that F(u) = v. Let V E‘H be a g’;-pre-neighbor-

hood of F(P>) = P,>. Since V is r-preopen, we have
1>0.2.

Case (a). 0.3>1>0.2. If we choose U %;’;} with 1>
m>0.2, thenUX) + X =1+ X =V(s) + X > v(s) +
a=06+01= pu (x)+a Since Uy)=m>0.2,U
is r-preopen. Therefore, Uisa q-pre-neighborhood

of P> such that F(U)F 3} =

Case (b). I > 0.3. In this case, we choose U lo] asa

required qa -pre-neighborhood of P> such that
F(U)[l 0] —

[s.t]

[L0]
Let V [5.¢]

F(P)) = P. Since V is r-preopen, we have | > 0.2.
Clearly, U[[;?,}l;]] is r-preopen and U(y) + 7 = V(s) +
>0.7>05+0.1= u(y) + a and hence Fis qj-pre-
continuous. Now, we claim that F(PCl,(4, r)) <
PCl4(4, r) for A[O[';:g']"]. The possible r-preopen sets

of P2Sare KI'™, where 0.3 > 1> 0.2 and m > 0.2

and JE{”;} where | >0.3and m € [0, 0.5]. Since K(y)
+A(Y) > u(y) +a and J(x) + A(x) > u(x) + a, we get

that F(P25) € F(PCl4(4 r)). Clearly, v["ﬁ"] is r-

preopen and V(s) + 0.5 > v(s) + a. Since F(A)[O‘”’],
we have V(s) + F(A)(S) <v(s) + a and V(t) + F(A)(t)
= 0 < v(t) + a. Therefore, V is a g;-pre-neighbor-
hood of F(P>®) and Vg,F(A)[v]. Thus, F(P>°) ¢
PCI.(F(A), r).

Counterexample 13: Let X = {x,y}, S = {s,t}. De-

be a g, -pre-neighborhood of

[0.7,0.6] X [0808 S [0.4,0.3]
flney[[s]sel [st] er,u Gyl € Ju,
0.5,0
and V; st] € Jy.

Letz:J, » 1 andc: J, — I be defined by

1, U=0y oru
t(U) = {0.6, U=1U;

0, otherwise
and

1, V =05o0rv,
o(V)= {0.5, V=1,

0, otherwise,

If F:(u,7) > (v,0) is defined by
F(x,5) = 0.7, F(x,t) = 0, F(y,s) = 0, F(y,t) = 0.6,

then F is one-to-one and F(x) [0'[?2]'6] =v. We fix r

= 0.5 and a =0.2. First, we find all r-preopen sets
in u. Clearly, 05 and u are r-preopen sets.

Case 1. 0 # U < (u—U,) 0303] In this case,
L(C.(U,r),r)=1L(u— Ul,r) = 0 = U.
each U is not r-preopen.

Case2.u# U <% (u—U,). Here, I (C u,r),r) =
I.(u,7) = u = U. Hence, each U, pq is r-preopen,

whenever p > 0.3 0r q>0.3.
Similarly, we can verify that 05, v and each

v Pl is r-preopen, where p > 0.3, g > 0.3. We claim

Hence,

]l
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that F is g7-pre-continuous. Let V[[lg;’]] be a q7;-
pre-neighborhood of F(P>) = B>. Since V[[ls' t]] is

r-preopen, we have | > 0.3 or m > 0.3. If we choose

U withp=land q=m, then U(x) + x =1+ =

V(S)+x>v (s)+a =1>0.9= u(x) + a. Since U(x)
> 0.3 or U(y) > 0.3, U is r-preopen. Therefore, U is
a gL -pre-neighborhood of P> such that

FHbm™ < v,

[s,t] —

[Lm]
Let V [5t]

F(P))= P/ Since V [[I;T]] is r-preopen, | > 0.3 or m

> 0.3, we choose U Bi;ﬂ with p=1and q = m so that

be a g/, -pre-neighborhood of

U is a q -pre-neighborhood of P;7 such that

F(U) [[ZS{’;]] <V.

Next, we claim that F(PCI.(4, r)) £ PCl.(4,

r), for A [0[';'2']5]. Consider P2 € p. The possible r-
preopen sets of P are KE{’;} where | € [0, 0.7]

and m > 0.3 and ch’;} where | > 0.3 and me [0,
0.6]. From the inequalities

K(y) + A(y) >0.3+0.5>pu(y) +«a
JX) +AKX)>03+0.6=09=pu(x) +a,

we get that P;m € F(PCIl.(A4, ). Clearly, we have
14 [Oig'f]l] is r-preopen and V(t) + 0.6 > v(t) + a. Since
F(4) [0'[?2]'5], we have V(s) + F(A)(s) =0 + 0.6 < v(s)
+a and V(t) + F(A)(t) <v(t) + a. Thus, P)° ¢
PCI.(F(A), r).

The following counterexample shows that the
converse of Theorem 12 is not true.

Counterexample 14. Let X = {x,y}, S = {s,t}. Define
[0.8,0.6] X [0.8,0.6] S [0.5,0.3]
By €17 vE T €17, U N0 € Jy, and

[0.4,0.3]
Vi [s.t] € Jy.

Ifz:J,—1and o : J, > I are respectively, de-

fined by

1, U=0y orpu
T(U) = {0.6, U=1U;

0, otherwise
and

1, V =05 orv,
o(V)= {0.5, V=1V,

0, otherwise,

Let the fuzzy proper function F : (u,7) =
(v, o) be defined by
F(x,s) = 0.8, F(x,t) =0, F(y,s) =0, F(y,t) = 0.6.

We note that F is one-to-one and F(u)/®5%! = v.

Fix r = 0.5 and a = 0.2. First, we find all r-preopen
setsin u. Clearly, 05 and u are r-preopen sets.

Case 1. 05 = U < (u—U;) %393 1 this case,

[s.t]
L.(C,(Ur),r)y=I,(u—U;,r)=02U. Hence,

each U is not r-preopen.
Case 2.u # U £ (u— Uy). Now, I.(C,(U,r),1) =
I.(u,7) =pu=U. Hence, if p>0.30rqg>0.3, then

U E;;} is an r-preopen fuzzy set.

Next, we find all r-preopen sets in v. Clearly, Og
and v are r-preopen sets.

Case (i). 0s #V < (v —V,) [0'[‘;'?]'3]. In this case,
I,(C,(V,r),r)=I,v=-V,r)=V,=v—-V; =
V. Hence,each V is r — preopen.

Case (ii). vV £ @W-V). Here,
I,(C;(V,r),r)=1,(v,r) =v =V . Hence, each

4 [[’;'f]] is r-preopen.

Clearly, V [?§0£]3] an is r-preopen fuzzy subset

in J, and from the inequality V(t) + 0.55 = 0.3 +
0.55> 0.8 =v(t) + a, we have V is a q},-pre-neigh-
borhood of F(P?%) = P?-35. Using that the q/,-pre-

neighborhoods of PY5° are K%;’;]] where | €0, 1]

and m > 0.3 and JE{”;} where p>0.3and 0.3>q >

0.25 and F(K)E;”;‘} £V, F(J)EC'ZH < V, we conclude

that F is not g/, -pre-continuous. We claim that
F(PClu(A, )< PCl(F(A) 1), forevery A€ J,. Let
[Lm]
[yl
Case (a). | = 0.7 or m > 0.5. In this case, every r-

preopen set U{i'ﬁ is a-quasi coincident with A,

where p > 0.3 or g > 0.3. Therefore, F(PCl.(4, r) =
F(u). Clearly, F(A)(s) =1>0.7 or F(A)(t) =m>0.5.
Hence, PCI.(F(4), r) = v = F(u) = F(PCl.(A, r)).

Case (b).I < 0.7 and m < 0.5. Clearly, A < PCl,(4,
r). Suppose that X > A(x) = |. We can choose a qJ-
pre-neighborhood U {gﬁ of P>, where u(x) — 1 > p
> u(x) — % and q > 0.3. Therefore, U is aj,-pre-
neighborhood of P>but Ug,A[u]. For any 5 > A(y)

=m, we can choose a q;-pre-neighborhood W g;}

of P where u(y) — m >q > u(y) —n and p > 0.3.
Therefore, W is al, -pre-neighborhood of
P} but Wg,Alu]. Thus, PCL.(4, r) = A.

Hence, F(PCI.(4, r)) = F(4A) < PCl.(F(4), r).

CONCLUSION

Using different notions of fuzzy closure oper-
ators, we have introduced various notions of weaker
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forms of continuities such as fuzzy weakly §-conti-
nuity, fuzzy weakly 8-ri-continuity, fuzzy weakly 8-
ro-continuity, fuzzy weakly 8-rs-continuity, etc., and
inter-relations among them are obtained completely.
Further, we have introduced new notion of quasi co-
incidence namely a-quasi coincidence and then a
fuzzy closure operator PCl, is introduced. Using this
fuzzy closure operator, g -pre-continuous fuzzy
proper function is introduced and all properties of
this function are obtained.
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HEKOMU ITOCJABU ®OPMMU HA MA3HHU ®A3U HEIIPEKHUHATHU IIPEC/IMKYBAIBA
Chandran Kalaivani!, Rajakumar Roopkumar?*

Mucruryr 3a maremaruxa, CCH Konen 3a umkenepctso, Kanasakam — 603 110, Unauja
2HMuctuTyT 32 MaTeMartuka, Y HuBep3uteT Anarana, Kapaukyu — 630 004, Unauja

Bo 0Boj Tpyn, BoBedyBaMe HEKOJIKY TIOMMH 3a HENPEKWHATH ()a3d IPaBH IPECIIMKYBamba, CO KOPUCTEHE Ha
NOCTOCUKUTE TOMMH 3a omepatopure (asu 3aTBopad M (ha3u BHATPEIIHOCT, Kako ITO ce R} -3atBopady, R -
BHATPEIIHOC UTH, U TW M3HECYBaMe CUTE MOXKHU BPCKU MOMery THe THIIOBH Ha HempekuHaTtocTH. IloHaTamy ru
BOBElyBaMe¢ KOHLICNITUTE 33 (-KBa3H-KOMHIMICHH]jA, (p -TIPS-OKOJHHA, G -TIpe-3aTBOpay U g -Npe-HeMpeKuHATH
NpECINKyBakba BO Ma3sHH (a3u TOIOJOLIKH IPOCTOPH M TI'M HCIHMTYBaMe EKBHUBAJICHTHHTE YCIOBH 3a qf -TIpe-
HETIPEKWHATOCT.

Koayunu 300opoBu: ®Pa3u npasu npecinnyBama; Ma3Ha (a3 TOIOJIOTH]ja; Ma3Ha (a3 HEMPEKHHATOCT; (asn
3aTBOpad; (ha3u BHATPELIHOCT
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