ITPUJIO3U, Opzenetue 3a MpUPOAHO-MAaTEeMAaTHIKU U OnoTeXHHYKH Hayku, MAHY, Tom 41 6p. 2, ctp. 135-140 (2020)
CONTRIBUTIONS, Section of Natural, Mathematical and Biotechnical Sciences, MASA, Vol. 41, No. 2, pp. 135-140 (2020)

Received: December 10, 2020
Accepted: December 18, 2020

ISSN 1857-9027

e-ISSN 1857-9949

UDC: 512.53:519.243
DOI:10.20903/csnmbs.masa.2020.41.2.164

Original scientific paper

INVERSE SAMPLING DESIGNS

Zaneta Popeska

UKIM, Faculty of Computer Sciences and Engineering, Skopje, Republic of Macedonia
e-mail: zaneta.popeska@finki.ukim.mk

Dedicated to Professor Gjorgji Cupona

Using the algebraic definition of a sampling design introduced in [6], and the notion of quotient sampling
designs described in [5] and [6] we present the definition of inverse sampling designs and examine some of their

properties.
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INTRODUCTION

In the sampling theory, as a part of mathemat-
ical statistics, that has been developed for several
decades, one can find different approaches in select-
ing a sample from a population. The discrete and
very often finite nature of population that is of interest
in the theory of sampling design, enables use of fi-
nite algebraic structures in research in this area of
statistics. In [6] we have examined the algebraic
structure of sampling designs, gave a unified formal
definition of the notion of sampling design that
opened the way of construction of new interesting
designs with some better properties in terms of their
use in statistical inference. In [5] we have shown
how to construct a quotient design of a given sam-
pling design. In this paper we present the results
about the opposite task, namely, we construct in-
verse sampling designs that can be associated to a
given sampling design.

Further on, when it is clear from the contest,
we will use only the word design instead of sampling
design.

At the beginning we present some preliminar-
ies. In sections two and three we state the unified
definition of a sampling design as an algebraic struc-
ture and the definition of a quotient design, give
some examples and state some already published re-

sults about quotient designs. In section four a con-
struction and characterization of inverse designs is
given.

Let B = {by, - by} be afinite set (called pop-
ulation), S=S(B) be a semigroup generated by B, and
U=U(B) be a free semigroup generated by B. The el-
ements of U(B) will be denoted by o, 1, ®, ... and
the elements of the semigroup S(B) by s, t, u, ....

Let c€e U, o=by:-b,, for b; € B. For a
given b € B, we say thatb € ¢; if b = b; for some
1 <i <n. The length L(c) of 5 is n. We define the
content C (o) of o € U, by

C(o)={b|bea}.

If S(B) is a semigroup generated by B, then
there exists a unique homomorphism (which is an
epimorphism) v : U(B)—»S(B) suchthat y(b) = b
for each b € B ([1]). From now on we will use the
symbol  only for this epimorphism.

SAMPLE AS AN ELEMENT
OF A SEMIGROUP

In this section we give the definition of a sam-
pling design via semigroups and give some exam-
ples that show how some known sampling designs
can be represented in terms of this definition.

Let B = {by,---, by} be an identifiable popu-
lation and S(B) a semigroup generated by B.
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Definition 2.1 A sampling design over the popula-
tion B and the semigroup S is an ordered triple P =
(B,S,p), where p: S(B)—R is a real function such
that:

i) Foreachs € S,p(s) = 0; and

i) Ysesyp(s) =1.

The semigroup S(B) is called a sampling set
and the function p - a design function. The elements
of S(B) are called S — samples over B, i.e., samples
over B in the semigroup S.

A carrier of the design P is the set

S, = {s|s € S(B),p(s) > 0}.
A unit b € B belongs to a sample s € S, de-
noted by b € s, if s = a,+:--a, fora,,-:-,a,, €B
and thereisanisuchthatl1 <i<n and b =aq;.In

other words b € s if and only if there is a o€ U,
such that b € cand y(o) =s.

A sampling design P = (B, S,p) is called a
regular design if for each b € B, there isan s € S,
such thatb € s.

We say that a sampling design P = (B, S, p) is
finite design if the carrier of P, S, is a finite set.

The content C(s) of s, is defined by

C(s) ={C(o0)|oeU, y(o) = s}.
By this definition we have that if beB, seS,
then b € sifand only if b €U {C|C € C(s)}.

The length L(s) of s, is defined by
L(s) ={n|n = L(0), w(o) = s}.

In other words, the length of s is the set of nat-
ural numbers that are lengths of the representations
of s as a product, i.e., that are lengths of all o€ U,
such that y(o) = s.

We say that a pair (B, S) satisfies the condition
for unigqueness of content (or length) if and only if
C(s) (or L(s)) is a set with one element, for each s €
S(B).

The following examples illustrate the repre-
sentation of different sampling designs, known in lit-
erature, dealing with sampling designs, in terms of
Definition 2.1.

Example 2.1. In [2] a sample is defined as a finite
sequence of units of a population with replications —
ordered sampling design with replications. It can be
represented by a design P = (B, U,p) where U is a
free semigroup generated by B, whose elements
(samples) are finite ordered sequences of B with rep-
lication. By the definition, it follows that the pair (B,
U) satisfies the condition for uniqueness of contents

and the condition for uniqueness of length. The same
representation P = (B, U, p) is valid for an ordered
sampling design with replications of fixed length,
where if p(s) > 0, the length of s is some fixed
number m.

Example 2.2. In [3] a sample is defined as a finite
sequence of units of a population without replica-
tions — ordered sampling design without replica-
tions. This design is of the form P = (B, S, p), where
S is the semigroup generated by B in which the fol-
lowing identities hold for each x,y € S:
x?2=x and xyx = xy.

The condition for uniqueness of contents is satisfied
but not the condition for uniqueness of length, alt-
hough there is a unique canonical representation of
each element of S as a product of units and can be
used for definition of unique content and length.

Example 2.3. In [4] a sample is defined as a subset
of B — unordered sampling design without replica-
tion. According to our definition, this design can be
represented by (B, M(B),p) where M(B) is a free
semi-lattice generated by B, i.e. the semigroup
where, for each x,y € B, the following identities
hold

x?=x and xy = yx.
The condition for uniqueness of content is satisfied
but the condition for uniqueness of length in general
is not satisfied, although as in the previous example
there is a unique canonical representation for each
element of M(B) that can be used for definition of
unique content and length.

Example 2.4. A sampling design where the sample
is defined as a multi subset of B, is called, an unor-
dered sampling design with replications. By Defini-
tion 2.1, a design of this type over a population B is
of the form (B, N, p) where N = N(B) is a free com-
mutative semigroup generated by B, i.e. the semi-
group in which the following identity holds for each
X,y € B:
Xy = yx

Both conditions for uniqueness of content and length
are satisfied.

Example 2.5. We give an example of a design that
doesn’t satisfy neither the condition for uniqueness
of content nor the condition for uniqueness of length.
Such a design is the design (B, S,p) where S is a
semigroup in which the following identity

XyZ = XUz
holds for each x,y,z,u € S.
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QUOTIENT DESIGNS

In this section we give the definition of quo-
tient designs introduced in [5] and state some prop-
erties which are discussed and proven there.

Assume that S = S(B) and S’ = S'(B’) are
semigroups generated by finite populations B and B,
and |[B| =N, |B'| =N’ with N'<N.

Theorem 3.1Let P = (B, S, p) beasampling design
and let ¢: S—>S’ be an epimorphism such that
@(B) =B’ If p’ = p,:S' >R isdefined by
p(s)= Ysep-1(sy P(s) for eachseS,
then, P"= (B’,S’p’) is a sampling design such that
S’y =@(Sp). =
We say that P’ is a quotient design of the de-
sign P by the epimorphism ¢, and denote it by P,,.
In the same sense, we say that P is an g-inverse de-
sign (or just inverse design) of the design P,

In the above theorem and further on, for ab-
breviation, we use ¢~1(s) instead of ¢~ ({s}).
Theorem 3.2 Any design (B, S, p") isa quotient de-
sign by some epimorphism y of some design
(B,U,p). m
Proposition 3.3 Quotient design of aregular design
isaregular design.m

Proposition 3.4 Quoatient design of afinitedesignis
afinitedesign. m

Proposition 3.5 For any design P = (B, S, p) there
isaquotient design P, whichisregular and finite. m

Example 3.1. Let S' = {1} be the semigroup with
one element, and B’ =S’ = {1}. Then there is a
unique design P’ = (B',S’,p") for which p'(1) = 1.
The design P’ is regular and finite and is a quotient
design of any design P.

Proposition 3.6 Any finite design which is not reg-
ular has a quotient design which is not regular.m

Proposition 3.7 Any regular design which is not fi-
nite has a quotient designthat is not finite. m

INVERSE SAMPLING DESIGNS

In the previous section we gave a construction
of a quotient design P’ = (B',S’,p") for a given de-
sign P = (B, S,p) and epimorphism ¢:S — S’, and
called the design P a ¢-inverse design of P’. In this
section we will look at the opposite task, i.e., for a
given design and given epimorphism, we will con-
struct inverse designs.

Theorem 4.1 Assumethat S = S(B) andS' = S'(B)
are semigroups generated by finite populations B
and B', |B|=N, |B'| =N with N'<N, and
@: S—S’ isan epimorphism such that ¢(B) = B”.
Let P = (B',S,p") beasampling design and
let for eachs’ €S’,
ps: @ (sh >R
be a function, such that:
a) ps (s) =0 foreachs Ertp‘l(s’);
b) ZSEgo—l(s') ps (8) =p'(s).
If the function p: S—R is defined by
p(s) = p(p(s)(s)'

then: P = (B,S,p) is a ¢-inverse design of P,
S,c¢1(S'y); and P’ = P,,.

Proof. First of all, since ¢(s) is completely deter-
mined by s, p(s) is well defined real number, and it
is clear that p(s) = 0. On the other hand

D P =) Py (s) = > b

SEeS S€eS SE@~1(sr) s1eST

=Y > e
s1eSr sep~1(s")
= Z p'(s") =1

SIES!

So, P = (B, S,p) isadesign over S = S(B) and

p'(s’) = Psi(s) = p(s).
s€p~1(s") s€p~1(s")
This implies that P’ is a quotient design of P by ¢,
and so, P is g-inverse design of P’ . m

Let us note that if s';,s’, € S"and s € S are
such that s € @~ '(s'1) N @~ (s',), then s’y = 5",
meaning that p: S — R is well defined. Also, if we
consider the family of all functions pg,: @~ 1(s") =
R, which satisfy the conditions a) and b) in Theorem
4.1, we will obtain the family of all designs P =
(B,S,p) that are g-inverse of P'. Particularly, if
P’ = P, putting p,5)(s) = p(s) , we will get the
initial design P.

We should emphasise that if s' € S" is such
that p'(s") = 0, i.e., s" & S, then py(s) = 0, for
all s € ~1(s"). Nevertheless, it is possible to have
p(S) = Py(s)(s) = 0 for some ¢(s) € S',.

The first part of the next theorem follows from
the Propositions 3.5 —3.7, the Example 3.1 and the
Theorem 4.1.

Theorem 4.2 (i) It is possible that an inverse design
of a: a) finite, b) regular,or ¢) finite and regular de-
sign, does not have the same property.

(i) Adesign P’ hassome of the properties a), b), or
c) if and only if there is an inverse design P of P’
that has thesame property.
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Proof. From the Theorem 4.1 and the Propositions
3.3and 3.4 it follows that if there is an inverse design
P of P’ that has some of the properties a), b) or c),
then the design P’ has the same property.

To prove the other direction of part (ii) of the
theorem, for P’ finite or regular, we give a construc-
tion of an inverse design that is finite and inverse de-
sign that is regular and an inverse design that is finite
and regular.

Let P’ be a finite design. We will construct a
finite inverse design of P’

For all s’eS’,,, we choose sy, -+, Sk(s") € 1)
and real numbers p; g, - Pi(s).s' > 0 such that
k(s' 1
2 pis = P(S).
Then the corresponding inverse design P is fi-
nite. Let us note that if we are varying s, ") Si(s)

and the numbers p; s, over all possible values, we
will get all possible finite inverse designs of P’.

Let us assume now that P’ is a regular design.
Then, there is a finite subset A" of S’,,, such that for
each b’ € B', there is s’ € A" such that b’ € s'. (We
can assume that A" is the minimal set with this prop-
erty, which will mean that |A’| < N, but for the fol-
lowing discussion this is irrelevant.) Then, for s’ €
Aleta'y, a,k(s’) be the elements of B’ for which
a'; € s'.We are looking at all units b € B, for which
¢@(b) = a', for some t. For each b with this property,
we choose s, € S, such that ¢(s,) = s"and b € s,.
(This is possible since, from a’; € s’ it follows that
s'=t'a'tq" , where t',q' € S"U{A}, and 1 is the
empty sequence. So, the s, we are looking for is
s, =tbq, for t € ¢~ 1(t')and q € ¢~ 1(q").) By
A(s") we denote the set of all such s,,.

Finally, we choose a function f;,: A(s') » R
such that p'(s") = Ysea(s) fs'(s) and for each s €
S', f¢(s) > 0. Such a function f;, exists, since
p'(s") > 0and A(s") are finite. For example, we can
define fo(s) = p'(s")/|A(s")|. Then, the function
psi: @~ 1(s") = R is defined by

_(fg(s)fors e A(s")
P () _{ 0 otherwise

Any inverse design P obtained in this way is

regular.

Note that by taking different choices for the
sets A(s") as well as different functions f;,, we will
get different regular inverse designs.

At the end, if P’ is finite and regular, we can
take A’ = S’p,, so, any regular inverse design P, ob-
tained by the previous discussion, is finite too. m

Proposition 4.3 For arbitrarydesign P'(B’,S’,p")
thereisa g-inversedesign P(B, S, p) of P such that
the function :S, — S',, induced by ¢, is abijec-
tion. Thedesign P isfiniteif and only if P’ isfinite.
Proof. We obtain such a design if for each s’ € 5,
we choose exactly one s € ¢~ (s") and putpyr (s) =
p'(s") and p,, (t) = 0 forany other t € ¢~ 1(s"),t #
s. If P' is finite, P is finite too, since |S,| = |S",,|. m

With the next example we show that the last
conclusion of the previous proposition does not hold
for regular designs.
Example 4.1. Let B ={by,-:-, by}, U =U(B),
B' ={by,-:+, by_1}, U = U'(B") and let ¢ U—>U’
be the epimorphism generated by b; +— b; for i <
N —1 and by — by_,. Let P' = (B',S",p") be a
regular design. Note that U’ is a subsemigroup of U,
so U'y, is a subset of U. If we take U, =U'},,
p(s) = p'(s), for seU, and p(s) = 0 for s & Uy,
we obtain an inverse design P of the design P’ which
is not regular even though @: U, — U’,, is a bijec-
tion.

The validity of the next proposition is a conse-
quence of the Theorem 4.2.

Proposition 4.4 There is a unique ¢-inverse design
of a given design P' = (B',S',p") if and only if
¢ *(s") has only one element for each s’ € S',. If
thiscondition isnot satisfied, thenthereareinfinitely
many ¢-inverse designs of thedesign P'. m
Proposition 4.5 Any ¢-inverse design of a finite de-
sign P’ isfiniteif andonlyif ¢~ (s") isfinitefor all
s'eS,.
Proof. Let s’y € S',, be such that ¢ ~*(s'y) is an in-
finite set and let A = {s;,-*,S,,**} € @ 1(s") be
suchthat fori # j,s; # s;. We choose a sequence of
positive real numbers py, -+, py, -+ such that
Yn=1Pn =D'(s"0).

If P is a g-inverse design of P’ such that
p(s;) = p; then P isnot finite since A < S,,. m

For a similar characterisation of regular de-
signs as the previous property, we need to introduce
the following notion.

Let P = (B, S,p) be a sampling design. We
say that a subset T < S is a regular subset of S if for
each b € B, thereisat € T,suchthat b € t.

The subset T < S is a minimal regular subset
of S if no other proper subset of T is regular.

If T" is minimal regular subset of S’ such that
T'S S, andT € ¢ '(T") is such that for each s’ €
T',|T n ¢~ 1(s")| = 1, then T is regular subset of S,.
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Proposition 4.6 A g-inverse design of a regular de-
signP' = (B',S’,p") isregular if and only if any sub-
set T of ¢~1(S",) such that for eachs’ € S',,|T N
¢ 1(s")| =1,isregular inS. m
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HNHBEP3HU IN3AJHU HA ITPUMEPOK

Kanera IHonecka

YKHUM, @akynret 3a HHPOPMATHUKU HAYKH U KOMITjYTEPCKO HHKEHEPCTBO
Ckorije, Penmybnmuka Makenonuja

Ilocsemeno na npogecop I opru Yynona

Kopucrejku ja neduHniMja Ha IPUMEPOK BO TEPMUHH Ha airebapcKH CTPYKTYpPH, BoBeleHa BO [6], kKako u
HOUMOT 3a (hakTop IUIaH Ha NpUMepOoK onuinax Bo [5] u [6] neduHrpame HHBEP3€EH IU1aH HAa TPUMEPOK M TH HCITUTYBaMe
HEKOH OJ CBOjCTBAaTa KOW T'M UMAaaT OBHE IIAHOBH.

Koayunu 300poBu : moxyrpynu, cnoboaHa moiayrpyna, enumMopdusam, IiaH Ha IpUMEpPOK.

MojoT uHTepec 3a anredpapcKuTe CTPYKTYPH MOTEKHYBA YIITE OJ1 IIPBaTa TOIMHA HA MOUTE CTYAUN
110 MaTemaTHKa, Kora npodyecop 1o exeMenTapHa anredpa mu 6ere mpopecopor 'opru Uymyna. O Toram
Ia ce J0 JIEHEC, TOj MMallle TOJeMO BIIMjaHHe W Oele Med o7 MOjOT HaydeH W mpodecHoHalleH pa3Boj.
Herogara cectpaHocT Kako MaTemMaTuiap, 3HaCHETO Koe 0e3pe3epBHO U YMEIIHO I'o MPEHEeCyBallle, Kako 1
HErOBUOT OJHOC KOH CTYACHTHTE M COpPAa0OTHHUIMTE NPETCTaByBaa NMPHMEP M MHCIHpAIHja BO Mojara
HacTaBHa M HaydyHa pabora. HeroBute He3aOopaBHM NpenaBarma, Tabnara Koja Ha KpajoT HAa YaCOBUTE
W3IJIeAale Kako TPHKIIMBO HAMIIAH A€yl Of YUeOHUK U 33J0JDKUTEITHUTE KOHCYJITAIIUU CO CUTE CTYIEeHTH
BO BTOpHHUK BO 7:30, mpen moueTokoT Ha yacoBuTe BO 8:15 Bo MaremarnukuoT ampurearap va [IM®, ro
noOyiMja MOjOT HayYeH MHTEpPEC BO MAaTeMaTHYKUTE MUCHMILIMHYU. Kora mouyHaB ga paboram Ha Mojara
JOKTOpCKa AWCEpTalMja ¥ I'M JUCKyTHpaBMe MPOOJIEMHTE 0J1 MOjOT HHTEPEC BO MaTeMaTniKaTa CTaTUCTHKA,
HEroBa cyrectuja Oelie Ja ce o0uIaM Jia MpUMeHaM anre0apcKu CTPYKTYPH BO TeopHjara Ha MPUMEPOK
BEPYBajKH JieKa Ha TOj HAYWH MHOTY OJ] Mpalliamara o/ UHTEepec K& MOKaT MOEeJHOCTABHO Jla CE OIrOBOpAT.

Ce uyBcTBYBaM CpekHa W OiarojapHa mTo OeB CTYAEHT W copaboTHHK Ha mpodecopot UynoHa,
mTo Oeme Moj YIUTeN, akaJeMCKH 1 HaydeH MEHTOP ¥ U3BOHPEIEH TpHjaTell.
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