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 ON FREE GROUPOIDS WITH (𝒙𝒚)𝒏 = 𝒙𝒏𝒚𝒏   
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We investigate free objects in the variety of groupoids which satisfy the identity (𝑥𝑦)𝑛 = 𝑥𝑛𝑦𝑛 . Under certain 

condition for the groupoid power 𝑥𝑛, i.e. for simple groupoid powers, a canonical description for free groupoids in such 

varieties is given and they are characterized by the injective groupoids in these varieties. 
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INTRODUCTION 

 

In the papers [3,5,6,8,9], Čupona and coau-

thors investigated free objects in varieties of group-

oids satisfying some identities among groupoid pow-

ers. Free objects in the variety of groupoids satisfy-

ing the law (𝑥𝑦)2 = 𝑥2𝑦2 are investigated in [4]. Al-

most 20 years ago, together with Professor Čupona, 

we obtained a canonical description of free objects 

in the variety of groupoids satisfying the identity 

(𝑥𝑦)𝑛 = 𝑥𝑛𝑦𝑛 for some groupoid powers 𝑥𝑛. This 

 

  

 

    

  

 

   

   

   

   

     

     

 

 

 

 

   

 

result was not published, and the question of finding

a  canonical  description  of  free  objects  for an  arbi- 
trary groupoid power 𝑥𝑛 is still open. In this paper

we present a slight improvement of the above men- 
tioned, canonical description.

First, we state some necessary preliminaries.

  Let 𝑮 = (𝐺,∙) be  a groupoid,  i.e.  an  algebra 
with a binary operation (𝑥, 𝑦) → 𝑥𝑦 on 𝐺. If 𝑎 = 𝑏𝑐
for 𝑎, 𝑏, 𝑐 ∈ 𝐺, we say that 𝑏, 𝑐 are divisors of 𝑎 in

𝑮. A sequence 𝑎1, 𝑎2, … of elements of 𝐺 is said to 
be a divisor chain in 𝑮 if 𝑎𝑖+1 is a divisor of 𝑎𝑖. We

say that 𝑎 ∈ 𝐺 is a prime in 𝑮 if the set of divisors of

𝑎 in 𝑮 is empty. A groupoid 𝑮 = (𝐺,∙) is said to be

injective if 𝑥𝑦 = 𝑢𝑣 implies (𝑥, 𝑦) = (𝑢, 𝑣), for any

𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝐺. By a “free groupoid” we mean “free

groupoid in the variety of groupoids” (i.e. an “abso- 
lutely free groupoid”).

  The following characterization of free group- 
oids is well known (see for example [1], I.1.)

Theorem.  1.1 A  groupoid 𝑭 = (𝐹,∙) is  free  if and 
only if (iff) it satisfies the following conditions.  

   

  

(1) Every divisor chain in 𝑭 is finite.

(2) F is injective. 
  

  

 

    

     

  

       

    

Then the set B of primes in F is nonempty and it is 
the unique basis of F. ∎

  Throughout  the  paper, a  free  groupoid  with 
basis 𝐵 will be denoted by 𝑭 or 𝑭(𝐵). For any 𝑣 ∈
𝐹, we define the length |𝑣| and the set 𝑃(𝑣) of parts 
of 𝑣 by:

|𝑏| = 1, | 𝑡𝑢| = |𝑡| + |𝑢|
𝑃(𝑏) = {𝑏}, 𝑃(𝑡𝑢) = {𝑡𝑢} ∪ 𝑃(𝑡) ∪ 𝑃(𝑢)

for every 𝑏 ∈ 𝐵, 𝑡, 𝑢 ∈ 𝐹.  

 

GROUPOID POWERS 

 

We recall some definitions, notions and state-

ments from [7]. 

Let 𝑬 = (𝐸,∙) be a free groupoid with one-el-

ement basis  {𝑒}. The elements of 𝐸 will be denoted 

by 𝑓, 𝑔, ℎ, … and called groupoid powers.  

If 𝑮 = (𝐺,∙) is a groupoid, then each 𝑓 ∈ 𝐸 in-

duces a transformation 𝑓𝑮 of 𝐺 (called the interpre-

tation of 𝑓 in 𝑮) defined by: 

𝑓𝑮(𝑥) = 𝜑𝑥(𝑓) 

where  𝜑𝑥: 𝐸 → 𝐺 is the unique homomorphism 

from 𝑬 to 𝑮 such that 𝜑𝑥(𝑒) = 𝑥. In other words 

𝑒𝑮(𝑥) = 𝑥, (𝑓ℎ)𝐺(𝑥) = 𝑓𝑮(𝑥)ℎ𝑮(𝑥), 

for any 𝑓, ℎ ∈ 𝐸, 𝑥 ∈ 𝐺. (For a fixed groupoid 𝑮 we 

usually write 𝑓(𝑥) instead of 𝑓𝑮(𝑥).) 

Each 𝑓 ∈ 𝐸 induces a transformation 𝑓𝑬 of 𝐸. 

We define a new operation " ∘ " on 𝐸 by: 

𝑓 ∘ 𝑔 = 𝑓𝑬(𝑔) = 𝑓(𝑔). 
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So, we obtain an algebra (𝐸,∘,∙) with two op-

erations, such that for any 𝑓, 𝑔, ℎ ∈ 𝐸 : 

𝑒 ∘ 𝑓 = 𝑓 ∘ 𝑒 = 𝑓 

(𝑓𝑔) ∘ ℎ = (𝑓 ∘ ℎ)(𝑔 ∘ ℎ). 

A power 𝑓 ∈ 𝐸  is said to be irreducible if   

𝑓 ≠ 𝑒 and 𝑓 = 𝑔 ∘ ℎ implies 𝑔 = 𝑒 or ℎ = 𝑒.  

The following facts for any 𝑓, 𝑔, 𝑝, 𝑞 ∈ 𝐸,
𝑡, 𝑢 ∈ 𝐹  can be shown by induction on lengths. 

 

  

    

        

   

        

  

2.1 |𝑓(𝑡)| = |𝑓||𝑡|.

2.2 𝑡 ∈ 𝑃(𝑓(𝑡)).

2.3 (𝑓(𝑡) = 𝑔(𝑢) and |𝑡| = |𝑢|) iff
(𝑓 = 𝑔 and 𝑡 = 𝑢).

2.4 (𝑓(𝑡) = 𝑔(𝑢) and |𝑡| ≥ |𝑢|) iff
(∃! ℎ ∈ 𝐸)(𝑡 = ℎ(𝑢) and 𝑔 = ℎ(𝑓)

2.5 (𝐸,∘, 𝑒) is a cancellative monoid. 

  

  

   

  

  

  

  

  

 

  

  
 

  2.6 If the length of a power 𝑓 is a prime inte- 
ger, then the power 𝑓 is irreducible.

  2.7 If 𝑓 ∘ 𝑝 = 𝑔 ∘ 𝑞 and 𝑝, 𝑞 are  irreducible, 
then 𝑓 = 𝑔 and 𝑝 = 𝑞.

  2.8 For  𝑓 ≠ 𝑒  there is a unique sequence  of 
ir reducible powers 𝑝1, 𝑝2, … , 𝑝𝑘 such that

𝑓 = 𝑝1 ∘ 𝑝2 ∘ … ∘ 𝑝𝑘 .

  2.9 The monoid (𝐸,∘, 𝑒) is a free monoid, with 
a basis the countable set of irreducible powers.

For a fixed groupoid power 𝑓 ∈ 𝐸 of length n

we will write 𝑥𝑛 instead of 𝑓(𝑥). For 𝑛 = 2 there is

only one power, 𝑥2 = 𝑥 ∙ 𝑥, but for 𝑛 ≥ 3 there are

different n-th powers. For example,  𝑥3 = 𝑥2 ∙ 𝑥 and  

𝑥3 = 𝑥 ∙ 𝑥2 are different powers, and they are the 

only powers of length three. There are five different 

powers of length four: 𝑥4 = 𝑥3 ∙ 𝑥,  𝑥4 = 𝑥2 ∙ 𝑥2, 

𝑥4 = 𝑥 ∙ 𝑥3, 𝑥4 = (𝑥 ∙ 𝑥2) ∙ 𝑥 and 𝑥4 = 𝑥 ∙ (𝑥 ∙ 𝑥2). 

It is well known that there are  
(2𝑛−2)!

𝑛!(𝑛−1)!
  groupoid 

powers of length n, i.e. n-th powers (see, for example 

[2] page 125, or [7] (1.8)).  

 

A CLASS OF GROUPOIDS 

DETERMINED BY GROUPOID POWERS 

 

Let 𝑓 ∈ 𝐸 be a groupoid power of length n and 

let B be a nonempty set. We will present a specific 

construction of a groupoid, denoted by 𝑹(𝑓, 𝐵), de-

termined by 𝑓 and B.  

If 𝑮 = (𝐺,∙) is a given groupoid, for any 

nonnegative integer k we define a transformation 

(𝑘): 𝑥 → 𝑥(𝑘) of G as the k-th power of 𝑓 in the mo-

noid (𝐸,∘, 𝑒), i.e.   

𝑥(0) = 𝑥,  𝑥(𝑘+1) = 𝑓(𝑥(𝑘)). 

Using the notion 𝑥𝑛 instead of 𝑓, we have:  

𝑥(0) = 𝑥,  𝑥(𝑘+1) = (𝑥(𝑘))
𝑛

. 

Since a free groupoid F is injective, it follows 

that the transformation (𝑘) is injective on F, for any 

𝑘 ≥ 0. Thus, for each 𝑘 ≥ 0, there exists an injective 

partial transformation (−𝑘): 𝑥 → 𝑥(−𝑘) on F defined 

by: 

𝑦(−𝑘) = 𝑥  iff  𝑥(𝑘) = 𝑦. 

For any 𝑢 ∈ 𝐹, there exists a largest integer 𝑚, 

such that 𝑢(−𝑚) ∈ 𝐹. We denote this integer by  [𝑢] 
and call it the exponent of 𝑢 in 𝐹.   

It is easy to show that the following facts are 

true for all 𝑢, 𝑣 ∈ 𝐹 and all integers 𝑡 and 𝑠. 

    

 

3.1 𝑢(𝑡) ∈ 𝐹 iff 𝑡 + [𝑢] ≥ 0.

3.2 If 𝑡 + [𝑢] ≥ 0, then |𝑢(𝑡)| = 𝑛𝑡|𝑢|. 

  3.3 If 𝑡 + [𝑢] ≥ 0 and 𝑡 + 𝑠 + [𝑢] ≥ 0,  then
(𝑢(𝑡))

(𝑠)
= 𝑢(𝑡+𝑠). 

  3.4 If 𝑡 + [𝑢] ≥ 0 and 𝑠 − 𝑡 + [𝑣] ≥ 0,  then
(𝑢(𝑡) = 𝑣(𝑠) iff  𝑢 = 𝑣(𝑠−𝑡)). 

Definition 3.1 We define 𝑅(𝑓, 𝐵), as the least subset 

of 𝐹 such that 𝐵 ⊆ 𝑅(𝑓, 𝐵) and: 

       𝑣𝑤 ∈ 𝑅(𝑓, 𝐵) iff 

     [(𝑣𝑤 = 𝑓(𝑢) for some 𝑢 ∈ 𝑅(𝑓, 𝐵)) or  

     (𝑣, 𝑤 ∈ 𝑅(𝑓, 𝐵) and 𝑚𝑖𝑛{[𝑣], [𝑤]} = 0)]. 

We will often write 𝑅  instead of 𝑅(𝑓, 𝐵). 

Let  𝑆 = 𝑅\{𝑢(1) = 𝑓(𝑢)|𝑢 ∈ 𝑅}. 

   

  

  

 

Proposition 3.5 For every ℎ ∈ 𝐸 and 𝑥 ∈ 𝐹,

ℎ(𝑥) ∈ 𝑆 implies 𝑥 ∈ 𝑅.

Proof. The proof is by induction on the length |ℎ| of

ℎ. For |ℎ| = 1, ℎ(𝑥) = 𝑥 ∈ 𝑆 implies 𝑥 ∈ 𝑅. 

Assume that for any 𝑔 ∈ 𝐸 with |𝑔| < 𝑘, 

𝑔(𝑥) ∈ 𝑆 implies 𝑥 ∈ 𝑅. Let ℎ = ℎ1ℎ2 and |ℎ| = 𝑘. 

  

  
   

 

  

 

Then ℎ(𝑥) = ℎ1(𝑥)ℎ2(𝑥) ∈ 𝑆 ⊆ 𝑅 implies  that

ℎ1(𝑥), ℎ2(𝑥) ∈ 𝑅 and 𝑚𝑖𝑛 {[ℎ1(𝑥)], [ℎ2(𝑥)]} = 0, 
i.e. [ℎ𝑖(𝑥)] = 0 for some 𝑖 ∈ {1,2}. This implies that

ℎ𝑖(𝑥) ∈ 𝑆,  and the  inductive hypothesis,  since

|ℎ𝑖| < 𝑘, implies that 𝑥 ∈ 𝑅. ∎

Proposition 3.6 For every 𝑢 ∈ 𝐹, 

𝑢(1)  = 𝑓(𝑢) ∈ 𝑅 iff 𝑢 ∈ 𝑅.  

Proof. The definition of 𝑅 implies that, if 𝑢 ∈ 𝑅, 

then  𝑢(1) = 𝑓(𝑢) ∈ 𝑅. 

Let 𝑢(1) ∈ 𝑅. If 𝑢(1) = 𝑣(1) for some 𝑣 ∈ 𝑅, 

   

  

 

  

  

  

 

  

  

then, since the transformation (1) is injective, it fol- 
lows   that  𝑢 = 𝑣 ∈ 𝑅. If  𝑢(1) ≠ 𝑣(1)  for   every 
𝑣 ∈ 𝑅, i.e. 𝑢(1) ∈ 𝑆, then Proposition 3.5 implies that 
𝑢 ∈ 𝑅. ∎

Proposition  3.7 If   for   an   integer  𝑡  and  𝑢 ∈ 𝐹, 
𝑡 +[𝑢] ≥ 0, then (𝑢(𝑡) ∈ 𝑅 iff 𝑢 ∈ 𝑅).

Proof. The proof is by induction on 𝑡, starting from

−[𝑢], using the fact 3.3 and Proposition 3.6. ∎

Proposition 3.8 For every 𝑢, 𝑣 ∈ 𝑅(𝑓, 𝐵), 

).
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(𝑢(−𝑚)𝑣(−𝑚) )
(𝑚)

∈ 𝑅(𝑓, 𝐵), 

 

  

 

 

where 𝑚 = 𝑚𝑖𝑛{[𝑢], [𝑣]}.

Proof. The fact that 𝑚 = 𝑚𝑖𝑛{[𝑢], [𝑣]} implies that

−𝑚 + [𝑢] ≥ 0 and −𝑚 + [𝑣] ≥ 0, and so, Proposi-

tion  3.7  implies that 𝑢(−𝑚) , 𝑣(−𝑚) ∈ 𝑅. Since 𝑚 =

[𝑢] or 𝑚 = [𝑣], we have [𝑢(−𝑚)] = 0  or  [𝑣(−𝑚)] =

0, and the definition of 𝑅 implies that  

(𝑢(−𝑚)𝑣(−𝑚) )
(𝑚)

∈ 𝑅(𝑓, 𝐵). ∎ 

If for 𝑢, 𝑣 ∈ 𝑅(𝑓, 𝐵) we define 𝑢 ∗ 𝑣 by: 

𝑢 ∗ 𝑣 = (𝑢(−𝑚)𝑣(−𝑚) )
(𝑚)

, 

 

 

 

where 𝑚 = 𝑚𝑖𝑛{[𝑢], [𝑣]}, then 𝑹 = (𝑅(𝑓, 𝐵),∗) is 
a groupoid.

Proposition 3.9 For every 𝑢, 𝑣 ∈ 𝑅(𝑓, 𝐵), 

𝑢(1) ∗ 𝑣(1) = (𝑢 ∗ 𝑣)(1). 

Proof. If 𝑚 = 𝑚𝑖𝑛{[𝑢], [𝑣]}, then 

min{[𝑢(1)], [𝑣(1)]} = 𝑚 + 1. 

The definition of ∗ and the fact 3.3 imply: 

𝑢(1) ∗ 𝑣(1) = ((𝑢(1))
(−(𝑚+1))

(𝑣 (1))
(−(𝑚+1))

)
(𝑚+1)

 

                    = ((𝑢)(−𝑚)(𝑣)(−𝑚))
(𝑚+1)

 

                    = (((𝑢)(−𝑚)(𝑣)(−𝑚))
(𝑚)

)
(1)

 

       = (𝑢 ∗ 𝑣)(1). ∎ 

Let ℳ be a variety of groupoids. If 𝑮 ∈ ℳ, 

we say that 𝑮 is an ℳ-groupoid, and if it is free in 

ℳ, we say that it is ℳ-free.  

For a groupoid power 𝑓 ∈ 𝐸, i.e. 𝑥𝑛 , we de-

note by ℳ𝑓 the variety of all the groupoids satisfying 

the identity  

𝑓(𝑥𝑦) = 𝑓(𝑥)𝑓(𝑦),  i.e. 

(𝑥𝑦)𝑛 = 𝑥𝑛𝑦𝑛. 

 

  

 

  

             

   

 

  

       

  For the groupoid power 𝑒2 = 𝑒𝑒, i.e. for the 
groupoid power 𝑥2, we denote ℳ𝑒2 by ℳ2.

We state the following  theorems,  proven   in 

[4] in their original forms.

Theorem 1. 𝑹 = (𝑅(𝑒2, 𝐵),∗) is ℳ2-free and the
set B is the unique basis for 𝑹.
Theorem 2. An ℳ2-groupoid 𝑯 = (𝐻,∙) is ℳ2-free
iff the following conditions hold.  

 (i) Every divisor chain in 𝑯 is finite. 

  2 2   

     

(ii) If 𝑥 = 𝑦 , then 𝑥 = 𝑦.

(iii) If 𝑥𝑦 = 𝑢𝑣, 𝑥 ≠ 𝑦 and 𝑢 ≠ 𝑣, then 𝑥 = 𝑢  

and 𝑦 = 𝑣. 

  (iv) If 𝑥2 = 𝑦𝑧 and 𝑦 ≠ 𝑧, then there are 𝑢, 𝑣 

 2 2such that 𝑥 = 𝑢𝑣, 𝑦 = 𝑢 and 𝑧 = 𝑣 .  

     Then the set P of primes in H is nonempty and 
the unique basis for H.  

 

  

  

Theorem 3. If H is an ℳ2-free groupoid, then there
exist subgroupoids G, Q of H, such that G is not ℳ2- 
free, and Q is ℳ2-free with an infinite rank.

  In [4], for any positive integer n, the groupoid 
power 𝑒𝑛, i.e. 𝑥𝑛, is defined as follows: 

𝑒1 = 𝑒,  𝑒𝑘+1 = 𝑒𝑘𝑒, i.e. 

𝑥1 = 𝑒,  𝑥𝑘+1 = 𝑥𝑘𝑥 . 

For the groupoid power 𝑒𝑛, we denote ℳ𝑒𝑛 

by ℳ𝑛. 

 

  

 

 

  The  generalizations  of  Theorems  1 – 3,  are 
also discussed in [4]. Theorem 1' and Theorem 3'
are the same as Theorem 1 and Theorem 3, where 2 
is replaced by n. Theorem 2' is obtained from The-

orem 2 by replacing 2 by n and by replacing (ii), (iii)

and (iv) by: 

 𝑥𝑛 = 𝑦 𝑛, then 𝑥 = 𝑦. 

 𝑥𝑦 = 𝑢𝑣, 𝑥 ≠ 𝑦 𝑛−1 and 𝑢 ≠ 𝑣𝑛−1, 

  then 𝑥 = 𝑢 and 𝑦 = 𝑣. 

   𝑥𝑛 = 𝑦𝑧 and 𝑦 ≠ 𝑧 𝑛−1, then there are
 𝑢, 𝑣 such that 𝑥 = 𝑢𝑣, 𝑦 = 𝑢𝑛 and 𝑧 = 𝑣𝑛.  

 

We note that Theorems 2  and 2'  characterize

ℳ2-free and ℳ𝑛-free groupoids in the same way as

Theorem 1.1 characterizes free groupoids. 

It is easy to check that if 𝑢𝑣 ∈ 𝑅(𝑒2, 𝐵), then 

𝑢, 𝑣 ∈ 𝑅(𝑒2, 𝐵), but this is not the case for 𝑅(𝑒𝑛, 𝐵) 

when 𝑛 ≥ 3. For example, if 𝑏 ∈ 𝐵 and 𝑛 = 3, then 

𝑏(2) ∈ (𝑏(1))
(1)

= (𝑏(1))
2

∙ 𝑏(1) ∈ 𝑅(𝑒3, 𝐵), 

but (𝑏(1))
2

∉ 𝑅(𝑒3, 𝐵). 

From now on, for a groupoid power 𝑔 ∈ 𝐸, of 

length p, we will often write: 𝑔𝑭(𝑥) = 𝑥𝑝 for 𝑥 ∈ 𝐹, 

and 𝑔𝑹(𝑥) = 𝑥∗
𝑝

 for 𝑥 ∈ 𝑅(𝑓, 𝐵).  

The following examples will show that in gen-

eral, for a groupoid power 𝑓 ∈ 𝐸, 𝑹 = (𝑅(𝑓, 𝐵),∗) 

does not have to belong to ℳ𝑓, and there are 𝑢 ∈ 𝑅  

such that [𝑢∗
𝑛] = 0, where 𝑓(𝑥) = 𝑥𝑛. 

Example 3.1. Let 𝑓 = 𝑒2 ∘ ((𝑒2)2𝑒) ∈ 𝐸 and let 

𝐵 = {𝑎}. The length of 𝑓 is 10, and we write  𝑓(𝑥) =
𝑥10 = ((𝑥2)2𝑥)2 = (𝑥5)2 = 𝑥(1). 

Let  𝑢 = 𝑎5 = (𝑎2)2𝑎.  Since 𝑎 ∈ 𝐵 ⊆ 𝑅, and 

[𝑎] = 0, we have that 𝑎2 ∈ 𝑅 and [𝑎2] = 0. This im-

plies that (𝑎2)2 ∈ 𝑅 and [(𝑎2)2] = 0. Next, we ob-

tain that (𝑎2)2𝑎 ∈ 𝑅 and [(𝑎2)2𝑎] = 0. All this im-

plies that 𝑢 ∈ 𝑅 and [𝑢] = 0.  

Now, we calculate 𝑢∗
10 = ((𝑢∗

2)∗
2 ∗ 𝑢)∗

2, as fol-

lows:   

𝑢∗
2 = 𝑢2 = (𝑎5)2 = 𝑎10 = 𝑎(1);  

(𝑢∗
2)∗

2 = 𝑎(1) ∗ 𝑎(1) = (𝑎 ∗ 𝑎)(1) = (𝑎2)(1); 

(𝑢∗
2)∗

2 ∗ 𝑢 = (𝑎2)(1) ∗ 𝑎5 = (𝑎2)(1)𝑎5; and  

𝑢∗
10 = (𝑎2)(1)𝑎5 ∗ (𝑎2)(1)𝑎5 = ((𝑎2)(1)𝑎5)2.   

(ii') If 
(iii') If

(iv') If
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We see that [𝑢∗
10] = 0. 

Next, let 𝑣 = 𝑢. Then:  

(𝑢 ∗ 𝑣)∗
10 = (𝑢∗

2)∗
10 = (𝑎(1))

∗

10
= 𝑎(2); and 

𝑢∗
10 ∗ 𝑣∗

10 = (((𝑎2)(1)𝑎5)2)2 .   

Thus, 𝑢∗
10 ∗ 𝑣∗

10 ≠ (𝑢 ∗ 𝑣)∗
10. 

Example 3.2. Let 𝑓 = 𝑒3 ∘ 𝑒2 ∘ 𝑒3 ∈ 𝐸 and let 𝐵 =
{𝑎, 𝑏}. The length of 𝑓 is 18, and we write  𝑓(𝑥) =
𝑥18 = ((𝑥3)2)3 = 𝑥(1). Let  𝑢 = ((𝑎3)3)2.  Since 

𝑎 ∈ 𝐵 ⊆ 𝑅, and [𝑎] = 0, we have that 𝑎2 ∈ 𝑅 and 

[𝑎2] = 0. This implies that 𝑎3 = 𝑎2𝑎 ∈ 𝑅 and 

[𝑎3] = 0. Next, (𝑎3)2 ∈ 𝑅 and [(𝑎3)2] = 0.  This, 

together with 𝑎3 ∈ 𝑅, implies that  ((𝑎)3)3 ∈ 𝑅 and 

[(𝑎3)3] = 0, and so, 𝑢 ∈ 𝑅 and [𝑢] = 0.  

Now, we calculate 𝑢∗
18 = ((𝑢∗

3)∗
2)∗

3 as follows: 

𝑢∗
2 = 𝑢 ∗ 𝑢 = 𝑢2 and  [𝑢2] = 0;   

𝑢∗
3 = 𝑢∗

2 ∗ 𝑢 = 𝑢2 ∗ 𝑢 = 𝑢3 

      = (((𝑎3)3)2)3 = (𝑎3)(1); 

(𝑢∗
3)∗

2 = (𝑎3)(1) ∗ (𝑎3)(1) = ((𝑎3)2)(1); 

((𝑢∗
3)∗

2)∗
2 = ((𝑎3)2)(1) ∗ ((𝑎3)2)(1) 

                  = (((𝑎3)2)2)(1); 

((𝑢∗
3)∗

2)∗
3 = (((𝑎3)2)2)(1) ∗ ((𝑎3)2)(1) 

                  = (((𝑎3)2)3)(1) = (𝑎(1))
(1)

= 𝑎(2). 

We see that [𝑢∗
18] =  2, while [𝑢] = 0. 

In the same way, for 𝑣 = ((𝑏3)3)2, we obtain 

that 𝑣∗
18 =  𝑏(2). 

The previous calculations imply that  

𝑢∗
18 ∗ 𝑣∗

18 = 𝑎(2) ∗ 𝑏(2) = (𝑎𝑏)(2). 

In the calculation of (𝑢 ∗ 𝑣)∗
18, we have: 

𝑢 ∗ 𝑣 = 𝑢𝑣;        (𝑢 ∗ 𝑣)∗
3 = (𝑢𝑣)∗

3 = (𝑢𝑣)3;  

((𝑢 ∗ 𝑣)∗
3)∗

2 = ((𝑢𝑣)3)∗
2 = ((𝑢𝑣)3)2 ; and  

(𝑢 ∗ 𝑣)∗
18 = (((𝑢𝑣)3)2)∗

3 = (((𝑢𝑣)3)2)3 

                   = (𝑢𝑣)(1). 

Since (𝑎𝑏)(2) ≠ (𝑢𝑣)(1), it follows that  

𝑢∗
18 ∗ 𝑣∗

18 ≠ (𝑢 ∗ 𝑣)∗
18. 

We see that the groupoid powers in the pre-

vious examples are not irreducible, and moreover,  

the groupoid power 𝑥𝑛 = (𝑥𝑝)𝑞 has (𝑥𝑞)2 as its 

part, i.e. (𝑥𝑞)2 ∈ 𝑃(𝑥𝑛). That is why we consider a 

special class of groupoid powers, called simple.  

We say that a groupoid power 𝑥𝑛 is complex, 

if 𝑥𝑛 = ((𝑥𝑝)𝑟)𝑞 for some 𝑝, 𝑞 ≥ 2 and 𝑟 ≥ 1, and 

𝑃(𝑥𝑛) contains (𝑥)𝑞(𝑥𝑟)𝑞 or (𝑥𝑟)𝑞(𝑥)𝑞. We say 

that a power 𝑥𝑛 is simple, if it is not complex. 

Irreducible groupoid powers are simple. Since 

any power  𝑥𝑛, for a prime n, is irreducible, it fol-

lows that it is simple. 

 

ℳ𝑓-FREE GROUPOIDS 

 

Let 𝑓 = 𝑔ℎ ∈ 𝐸\{𝑒}. For a given groupoid 

𝑮 = (𝐺,∙) let 𝑇(𝑓, 𝐺) ⊆ 𝐺 × 𝐺 be defined as: 

𝑇(𝑓, 𝐺) = {(𝑔(𝑢), ℎ(𝑢))|𝑢 ∈ 𝐺}. 

With the notation 𝑓(𝑥) = 𝑥𝑛 = 𝑥𝑝𝑥𝑞,  

𝑇(𝑓, 𝐺) = {(𝑢𝑝, 𝑢𝑞)|𝑢 ∈ 𝐺}. 

  Theorem 4.1 Let 𝑓 = 𝑔ℎ, 𝑔, ℎ ∈ 𝐸\{𝑒} and with the
= 𝑛 =notation 𝑥 𝑥 𝑥𝑝 𝑞𝑓( ) 𝑥 let  a  groupoid 𝑯 =

  

 

,

(𝐻,∙) satisfies the following conditions.

(i) Every divisor chain in H is finite. 
𝑛 𝑛 (ii) If 𝑥 = 𝑦 in H, then 𝑥 = 𝑦.  

  (iii) If 𝑥𝑦 = 𝑢𝑣 in H, and 𝑥𝑦 ≠ 𝑧𝑛 for each 𝑧 ∈ 𝐺,

  

  

then 𝑥 = 𝑢 and 𝑦 = 𝑣.

(iv) If 𝑥𝑛 = 𝑦𝑧 in H and (𝑦, 𝑧) ∉ 𝑇(𝑓, 𝐻), then there
𝑛 𝑛          𝑢    𝑣 are 𝑢, 𝑣 ∈ 𝐻, so that 𝑥 = 𝑢𝑣, 𝑦 = and 𝑧 = . 

  

 

  

  

Then, the groupoid H is ℳ𝑓-free and the set B
of primes in H is nonempty and is the unique basis
of H.
Proof. The proof is almost the same as the proof of 
Proposition 2.3 from [4], which is in fact Theorem

4.1 for  𝑓 = 𝑒2, i.e. for the power 𝑥2. The only dif-

ference is the following.  

The conditions (ii), (iii) and (iv), imply that, 

for the power 𝑥2, any element 𝑢 ∈ 𝐻 has at most 

three divisors (shown in [4]), while for any other 

power, any element 𝑢 ∈ 𝐻 has at most four divisors. 

The proof of this for a power different than 𝑥2 is as 

follows. Let 𝑢 ∈ 𝐻. 

If 𝑢 is prime, then it has 0 divisors. If 𝑢 is not 

prime, we consider two cases.   

Case 1. For any 𝑥 ∈ 𝐻, 𝑢 ≠ 𝑥𝑛. Then, the condition 

(iii) implies that 𝑢 has at most two divisors. 

Case 2. For some 𝑥 ∈ 𝐻, 𝑢 = 𝑥𝑛 = 𝑥𝑝𝑥𝑞. The con-

dition (ii) implies that the element 𝑥 is unique. If 𝑥 

is prime and 𝑢 = 𝑦𝑧, then (𝑦, 𝑧) ∉ 𝑇(𝑓, 𝐻) would 

imply that there are 𝑣, 𝑤 ∈ 𝐻, so that 𝑥 = 𝑣𝑤, that is 

not possible. Hence, for 𝑥 prime, 𝑢 has at most two 

divisors. If 𝑥 is not prime, i.e. if 𝑥 = 𝑣𝑤, then 𝑢 =
𝑥𝑛 = 𝑥𝑝𝑥𝑞 = 𝑣𝑛𝑤𝑛, and conditions (ii) and (iv) im-

ply that  𝑢 has at most four divisors. ∎ 

 Theorem 4.2 If 𝑓(𝑥) = 𝑥 𝑛, and 𝑢∗
𝑛 = 𝑢𝑛 for every 

  

 

𝑢 ∈ (𝑅(𝑓, 𝐵),∗),  then (𝑅(𝑓, 𝐵),∗) satisfies the  con- 
ditions (i) to (iv), from Theorem 4.2, and so it is ℳ𝑓-
free with basis B. 
Proof. Let  𝑥𝑛 = 𝑥𝑝𝑥𝑞. 

If 𝑥 ∗ 𝑦 = 𝑧, then |𝑧| > |𝑥|, |𝑧| > |𝑦|, and this 

implies that R satisfies (i). 

If 𝑥∗
𝑛 = 𝑦∗

𝑛, then 𝑥𝑛 = 𝑦𝑛 in F, and so 𝑥 = 𝑦. 

Hence, R satisfies (ii). 
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If  𝑥 ∗ 𝑦 = 𝑢 ∗ 𝑣 and 𝑥 ∗ 𝑦 ≠ 𝑧∗
𝑛  for any 𝑧 ∈

𝑅, then min{[𝑥], [𝑦]} = 0 = min {[𝑢], [𝑣]}. This 

implies that 𝑥 ∗ 𝑦 = 𝑥𝑦, 𝑢 ∗ 𝑣 = 𝑢𝑣, and  𝑥𝑦 = 𝑢𝑣 

in F. So, 𝑥 = 𝑢 and 𝑦 = 𝑣. Hence, R satisfies the 

condition (iii). 

Let 𝑥∗
𝑛 = 𝑦 ∗ 𝑧 and (𝑦, 𝑧) ∉ 𝑇(𝑓, 𝑅).  

If min{[𝑦], [𝑧]} = 0, then   

𝑥𝑝𝑥𝑞 = 𝑥𝑛 = 𝑥∗
𝑛 = 𝑦 ∗ 𝑧 = 𝑦𝑧 

and so, (𝑦, 𝑧) ∈ 𝑇(𝑓, 𝑅). Hence, min{[𝑦], [𝑧]} > 0, 

and this implies that there are 𝑢, 𝑣 ∈ 𝑅, such that 

 𝑦 = 𝑢𝑛 = 𝑢∗
𝑛, 𝑧 = 𝑣𝑛 = 𝑣∗

𝑛, and 𝑥𝑛 = (𝑢 ∗ 𝑣)𝑛, 

   

  

i.e. 𝑥 = 𝑢 ∗ 𝑣. Hence, R satisfies (iv). ∎

Theorem 4.3 Let 𝑓 ∈ 𝐸 be a simple groupoid power,
𝑛   . Then, for every ∈ (𝑅(𝑓 𝐵) )with 𝑓(𝑥) = 𝑥 𝑢 , ,∗ ,  

𝑢∗
𝑛 = 𝑢𝑛. 

Proof. By Proposition 3.9 it is enough to consider 

𝑥 ∈ 𝑅 with [𝑥] = 0. We will show that 𝑥∗
𝑡 = 𝑥𝑡, for 

any part 𝑥𝑡 of 𝑥𝑛.  

(1) Since  [𝑥] = 0, it follows that  𝑥∗
𝑡 = 𝑥 ∗ 𝑥 = 𝑥2.  

(2) Let 𝑥∗
𝑡 = 𝑥𝑡, for any part 𝑥𝑡 of 𝑥𝑛 with 𝑡 < 𝑘. 

(2.1) Let 𝑥𝑘 = 𝑥𝑞𝑥𝑠 be a part of 𝑥𝑛 with 𝑞 < 𝑠.  

Then, 𝑥∗
𝑘 = 𝑥∗

𝑞
∗ 𝑥∗

𝑠 = 𝑥𝑞 ∗ 𝑥𝑠.  

thatWe will show min {[𝑥𝑞], [𝑥𝑠]} = 0,  

which implies that 𝑥∗
𝑘 = 𝑥𝑘. Assume contrary, that,  

𝑥𝑞 = 𝑢𝑛 and 𝑥𝑠 = 𝑣𝑛 for some 𝑢, 𝑣 ∈ 𝑅. Since 
[𝑥] = 0 and  𝑘 ≤ 𝑛, it follows that 2 ≤ 𝑞, 𝑠 < 𝑛. 

This, implies that, 𝑥 = 𝑢𝑚 and 𝑥 = 𝑣𝑝 for some 

𝑚, 𝑝 ≥ 2, and 𝑢𝑛 = (𝑢𝑚)𝑞, 𝑣𝑛 = (𝑣𝑝)𝑠, and we ob-

tain that 

𝑧𝑛 = (𝑧𝑚)𝑞 = (𝑧𝑝)𝑠 . 

Since 𝑞 < 𝑠, it follows that 𝑧𝑛 = (𝑧𝑚)𝑞 = (𝑧𝑝)𝑠, 

𝑧𝑚 = (𝑧𝑝)𝑟 and 𝑧𝑠 = (𝑧𝑟)𝑞. With all this, we have:  

𝑥𝑛 = ((𝑥𝑝)𝑟)𝑞 and 𝑥𝑞𝑥𝑠 = 𝑥𝑞(𝑥𝑟)𝑞 is a part of  𝑥𝑛, 

i.e. the power 𝑥𝑛 is not simple. This is a contradic-

tion. 

(2.2) The proof that 𝑥∗
𝑘 = 𝑥𝑘, for 𝑥𝑘 = 𝑥𝑠𝑥𝑞 with 

𝑞 < 𝑠 is the same as the proof in (2.1). 

(2.3)  Let 𝑥𝑘 = 𝑥𝑞𝑥𝑠 be a part of 𝑥𝑛 with 𝑞 = 𝑠, but 

possibly different powers 𝑥𝑞 , 𝑥𝑠, and let 𝑥𝑞 = 𝑢𝑛 

and 𝑥𝑠 = 𝑣𝑛 for some 𝑢, 𝑣 ∈ 𝑅. Similarly as in (2.2), 

we obtain that, 𝑥 = 𝑢𝑚 = 𝑣𝑝, for some 𝑚, 𝑝 ≥ 2, 

and 𝑢𝑛 = (𝑢𝑚)𝑞, 𝑣𝑛 = (𝑣𝑝)𝑠 Now,. 𝑞 = 𝑠 and 

𝑠𝑝 = 𝑛 = 𝑞𝑚, imply that 𝑝 = 𝑚. This, together 

with 𝑢𝑚 = 𝑣𝑝 in F implies that 𝑢 = 𝑣 and 𝑧𝑚, 𝑧𝑝 

are the same powers. Next, (𝑢𝑚)𝑞 = (𝑣𝑝)𝑠 in F im-

plies that 𝑧𝑞 , 𝑧𝑠 are the same powers. All this implies 

that, 𝑥𝑛 = ((𝑥𝑝)1)𝑞 and 𝑥𝑞𝑥𝑞 = 𝑥𝑞(𝑥1)𝑞 is a part 

of 𝑥𝑛, i.e. 𝑥𝑛 is not simple. Hence, [𝑥𝑞] = 0 or 

 [𝑥𝑠] = 0, and 𝑥∗
𝑘 = 𝑥𝑘. ∎ 

 

  

  

 

    

  

  

  

  

  The  following  generalization  of  Theorem  1 
from [4], follows from Theorems 4.2 and 4.3.

Theorem 4.4 If 𝑓 ∈ 𝐸 is a simple groupoid power, 
then (𝑅(𝑓, 𝐵),∗) is ℳ𝑓-free with basis B, and satis-
fies the conditions (i), (ii), (iii) and (iv) from Theo- 
rem 4.1. ∎

The  next  theorem  characterizes ℳ𝑓-free

groupoids, for a simple power 𝑓, and it is a general- 
ization of Theorem 2 from [4] and Theorem 1.1. Its

proof follows from Theorems 4.1, 4.2 and 4.3.

Theorem 4.5 Let 𝑓 ∈ 𝐸 be a simple groupoid po- 
wer. A groupoid 𝑯 = (𝐻,∙) is ℳ𝑓-free if and only if
it satisfies the conditions (i), (ii), (iii) and (iv) from 
Theorem 4.1.  Then, the set B of primes in H is non-
empty and is the unique basis of H. ∎ 
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ЗА СЛОБОДНИ ГРУПОИДИ СО (𝒙𝒚)𝒏 = 𝒙𝒏𝒚𝒏  
 

Дончо Димовски, 

 

Македонска академија на науките и уметностите, Скопје, Република Македонија 

 

Во трудовите [3,5,6,8,9], Чупона со соработниците ги истражува слободните објекти во многуобразија 

групоиди кои задоволуваат некои идентитети меѓу групоидни степени. Слободни објекти во многуобразието 

групоиди дефинирано со идентитетот (𝑥𝑦)2 = 𝑥2𝑦2 се разгледувани во трудот [4]. Пред повеќе од 20 години, 

заедно со професор Чупона, добивме каноничен опис на слободни објекти во многуобразието групоиди кои го 

задоволуваат идентитетот (𝑥𝑦)𝑛 = 𝑥𝑛𝑦𝑛 за некои групоидни степени 𝑥𝑛. Овој резултат не беше публикуван, а 

прашањето за наоѓање каноничен опис на слободни групоиди за произволен групоиден степен 𝑥𝑛 е сеуште 

отворено. Во овој труд е дадено мало подобрување на резултатот од пред 20 години, односно е даден каоничен 

опис на слободни групоиди во многуобразието групоиди дефинирано со идентитетот (𝑥𝑦)𝑛 = 𝑥𝑛𝑦𝑛, за 

едноставни групоидни степени 𝑥𝑛. За такви степени, слободните групоиди се карактеризирани со помош на 

инјективните групоиди од тоа многуобразие. 

 

Клучни зборови: многуобразие групоиди, слободен групоид, групоидни степени  
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