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We investigate free objects in the variety of groupoids which satisfy the identity (xy)™ = x™y™. Under certain
condition for the groupoid power x™, i.e. for simple groupoid powers, a canonical description for free groupoids in such
varieties is given and they are characterized by the injective groupoids in these varieties.
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INTRODUCTION

In the papers [3,5,6,8,9], Cupona and coau-
thors investigated free objects in varieties of group-
oids satisfying some identities among groupoid pow-
ers. Free objects in the variety of groupoids satisfy-
ing the law (xy)? = x2y? are investigated in [4]. Al-
most 20 years ago, together with Professor Cupona,
we obtained a canonical description of free objects
in the variety of groupoids satisfying the identity
(xy)™ = x™y™ for some groupoid powers x™. This
result was not published, and the question of finding
a canonical description of free objects for an arbi-
trary groupoid power x™ is still open. In this paper
we present a slight improvement of the above men-
tioned, canonical description.

First, we state some necessary preliminaries.

Let G = (G,") be a groupoid, i.e. an algebra
with a binary operation (x,y) - xy onG. If a = bc
for a,b,c € G, we say that b, c are divisors of a in
G. A sequence a4, a,, ... of elements of G is said to
be a divisor chain in G if a; 4 is a divisor of a;. We
say that a € G is a prime in G if the set of divisors of
a in G is empty. A groupoid G = (G,") is said to be
injective if xy = uv implies (x,y) = (u,v), for any
X,¥,U,V € G. By a “free groupoid” we mean “free
groupoid in the variety of groupoids” (i.e. an “abso-
lutely free groupoid”).

The following characterization of free group-
oids is well known (see for example [1], 1.1.)

Theorem. 1.1 A groupoid F = (F,") is free if and
only if (iff) it satisfies the following conditions.

(1) Everydivisor chainin F isfinite.

(2) Fisinjective.
Then the set B of primesin F is nonempty and it is
the unique basisof F. m

Throughout the paper, a free groupoid with
basis B will be denoted by F or F(B). For any v €
F, we define the length |v| and the set P(v) of parts
of v by:

|b| =1, |tul=1[t|+ |ul
P(b) = {b}, P(tu) ={tu}UP(t)UP(u)
foreveryb € B, t,u €F.

GROUPOID POWERS

We recall some definitions, notions and state-
ments from [7].

Let E = (E,") be a free groupoid with one-el-
ement basis {e}. The elements of E will be denoted
by f, g, h, ... and called groupoid powers.

If G = (G,”) isagroupoid, theneach f € E in-
duces a transformation £¢ of G (called the interpre-
tation of f in G) defined by:

fE) = o)
where ¢,:E = G is the unique homomorphism
from E to G such that ¢, (e) = x. In other words

ef(x) = x, (fR)°(x) = fE(X)RE(x),
forany f,h € E,x € G. (For a fixed groupoid G we
usually write f(x) instead of £%(x).)

Each f € E induces a transformation f£ of E.
We define a new operation " o " on E by:

feg=rE9 =f9.
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So, we obtain an algebra (E,o,") with two op-
erations, such that forany f,g,h € E :

e o f = f oe = f
(fg)eh=(foh)(geh).

A power f € E is said to be irreducible if
f#*eandf =gohimpliessg=eorh=e.

The following facts for any f,g,p,q €E,
t,u € F can be shown by induction on lengths.

2111 = If1t].

22t € P(f(t).

23 (f(t) = g(u) and [t] = [u]) iff

(f =gandt = u).
24 (f(t) = g(w) and |t| = |u]) iff
(3th € E)(t = h(u) and g = h(f)).

2.5 (E,o, e) isa cancellative monoid.

2.6 If the length of a power f isa prime inte-
ger, then the power f isirreducible.

27 1f fop=goq and p,q are irreducible,
thenf =gandp =q.

2.8 For f # e thereisaunique sequence of
irreducible powers py, p,, ..., Px Such that

f=piep2o.opk.

2.9 Themonoid (E e, e) isa free monoid, with
a basis the countable set of irreducible powers.

For a fixed groupoid power f € E of length n
we will write x™ instead of f(x). For n = 2 there is
only one power, x2 = x - x, but for n > 3 there are
different n-th powers. For example, x3 = x2 - x and
x3 = x - x? are different powers, and they are the
only powers of length three. There are five different
powers of length four: x* = x3-x, x*=x2-x?,
x*=x-x3x*=(x-x?)-xand x* = x - (x - x?).

It is well known that there are -2=2! groupoid
n!(n—1)!

powers of length n, i.e. n-th powers (see, for example
[2] page 125, or [7] (1.8)).

A CLASS OF GROUPOIDS
DETERMINED BY GROUPOID POWERS

Let f € E be agroupoid power of length n and
let B be a nonempty set. We will present a specific
construction of a groupoid, denoted by R(f, B), de-
termined by f and B.

If G =(G,) is a given groupoid, for any
nonnegative integer k we define a transformation
(k): x = x® of G as the k-th power of f in the mo-
noid (E,o, e), i.e.

x© =, x0+D = (xR,

Using the notion x™ instead of f, we have:

x© = x xG+D) = (x(k>)”.

Since a free groupoid F is injective, it follows
that the transformation (k) is injective on F, for any
k = 0. Thus, for each k = 0, there exists an injective
partial transformation (—k): x — x(=%) on F defined
by:

y(R = x iff x(K) =y,

Forany u € F, there exists a largest integer m,
such that uC=™ € F. We denote this integer by [u]
and call it the exponent of w in F.

It is easy to show that the following facts are
true for all u, v € F and all integers t and s.

31 u® eFiff t+[u]>0.

3.21ft + [u] = 0, then [u®| = ntul.

33Ift+[u]=0andt+s+ [u] =0, then
(u®)® =y e+,

341ft+[u]=0ands—t+ [v] =0, then

w® = v jff y=p6D)
Definition 3.1 We define R(f, B), as the least subset
of F such that B < R(f, B) and:
vw € R(f, B) iff
[(vw = f(u) for some u € R(f, B)) or
(v,w € R(f, B) and min{[v], [w]} = 0)].

We will often write R instead of R(f, B).

Let S = R\{u™® = f(u)|u € R}.
Proposition 3.5 For everyh € E and x € F,

h(x) € Simpliesx € R.
Proof. The proof is by induction on the length |h| of
h.For |h| =1, h(x) = x € S implies x € R.

Assume that for any g € E with |g| <k,
g(x) € Simpliesx € R. Leth = hyh, and |h| = k.
Then h(x) = hy(x)h,(x) €S S R implies that
hy(x), ho(x) € R and min {[h,(x)], [h2(x)]} = 0,
i.e. [h;(x)] = 0 forsomei € {1,2}. This implies that
h;(x) € S, and the inductive hypothesis, since
|h;] < k, impliesthatx € R. m
Proposition 3.6 For everyu € F,

u® = f(u) eRiffu €R.
Proof. The definition of R implies that, if u € R,
then u™ = f(u) € R.

Let u® e R. If u® = @ for some v € R,
then, since the transformation (1) is injective, it fol-
lows that u=veR.If u® =v® for every
v €R,ie.u® € S, then Proposition 3.5 implies that
UER. m

Proposition 3.7 If for an integer t and u € F,
t +[u] = 0, then (u® € R iffu € R).

Proof. The proof is by induction on t, starting from
—[u], using the fact 3.3 and Proposition 3.6. m

Proposition 3.8 For every u,v € R(f, B),
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(uCmyEm Y™ e (£, B),
wherem = min{[u], [v]}.
Proof. The fact that m = min{[u], [v]} implies that
—m+ [u] = 0and —m + [v] = 0, and so, Proposi-
tion 3.7 implies that uC=™),v(=™ € R. Since m =
[u] or m = [v], we have [u™] = 0 or [vC™)] =
0, and the definition of R implies that

(uEmym Y™ e R(f,B).

If for u,v € R(f, B) we define u * v by:
uxv = (utmMyEm )(m),
where m = min{[u], [v]}, then R = (R(f,B),*) is
a groupoid.
Proposition 3.9 For every u, v € R(f, B),
u® 5 p @O = (g ) D,
Proof. If m = min{[u], [v]}, then
min{[u®],[vP]} =m + 1.
The definition of * and the fact 3.3 imply:

u® x pD = ((u(l))(—(m+1))(v(l))(—(m+1)))(m+1)
= (@™ (v)(—m))(m+1)

=w*v)D. m

Let M be a variety of groupoids. If G € M,
we say that G is an M -groupoid, and if it is free in
M, we say that it is M -free.

For a groupoid power f € E, i.e. x™, we de-
note by M the variety of all the groupoids satisfying
the identity

fOy) =fEf ), ie.
(xy)n - xnyn_

For the groupoid power e? = ee, i.e. for the
groupoid power x2, we denote M .2 by M.

We state the following theorems, proven in
[4] in their original forms.

Theorem 1. R = (R(e?, B),*) is M,-free and the
set B isthe unique basis for R.

Theorem 2. An M ,-groupoid H = (H,") isM>»-free
iff the following conditions hold.

(i) Every divisor chainin H isfinite.

(i) If x2 = y2 thenx = y.

(i) If xy = uv,x # yandu # v, thenx = u
andy = v.

(iv) If x?2 = yz and y # z, then thereare u, v
suchthat x = uv, y = u? and z = v2.

Then the set P of primesin H isnonempty and
the unique basisfor H.

Theorem 3. If H isan M,-free groupoid, then there
exist subgroupoids G, Q of H, such that G isnot M-
free, and Q is M,-free with aninfinite rank.

In [4], for any positive integer n, the groupoid
power e™, i.e. x™, is defined as follows:

L=p¢, ektl =eke je.
k1 — kg

e
xt=e, x
For the groupoid power e™, we denote M ,n
by M.
The generalizations of Theorems 1 — 3, are
also discussed in [4]. Theorem 1' and Theorem 3'
are the same as Theorem 1 and Theorem 3, where 2
is replaced by n. Theorem 2' is obtained from The-
orem 2 by replacing 2 by n and by replacing (ii), (iii)
and (iv) by:
(i Ifx*=y™ thenx =y.
(i f xy=uv, x #y™ ! and u #v" 1,
thenx =u andy = v.
(iv)If x"=yzandy # z" 1, thenthere are
u,vsuchthatx = uv,y =u"*andz = v™.
We note that Theorems 2 and 2' characterize
M,-free and M;,-free groupoids in the same way as
Theorem 1.1 characterizes free groupoids.

It is easy to check that if uv € R(e?, B), then
u, v € R(e?, B), but this is not the case for R(e™, B)
when n > 3. For example, if b € Band n = 3, then

p@ e (@)Y = (bW)?. ™ € R(e?,B),

but (b™M)* & R(e3, B).

From now on, for a groupoid power g € E, of
length p, we will often write: gF (x) = xP forx € F,
and gB(x) = x? for x € R(f,B).

The following examples will show that in gen-
eral, for a groupoid power f € E, R = (R(f,B),*)
does not have to belong to My, and there are u € R
such that [u}] = 0, where f(x) = x™.

Example 3.1. Let f =e?0 ((e?)%?e) € E and let
B = {a}. The length of f is 10, and we write f(x) =
10 — ((xZ)Zx)Z — (xS)Z — x(l).

Let u = a® = (a?)?a. Sincea € B € R, and
[a] = 0, we have that a® € R and [a?] = 0. Thisim-
plies that (a?)? € R and [(a?)?] = 0. Next, we ob-
tain that (a®)?a € R and [(a?)?a] = 0. All this im-
plies thatu € R and [u] = 0.

Now, we calculate ul® = ((u?)? * u)?, as fol-
lows:

u?2 =u? = (a®)? =ql = a®:

WH? =a® «a® = (axa)® = (a®)D;
Ww?)?*xu = (a®>)® xa® = (a®)Ma®; and
uio — (aZ)(l)aS % (az)(l)as — ((aZ)(l)aS)z_
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We see that [ul°] = 0.

Next, let v = u. Then:

)2 = @)L = (a®)!° = a®; and
ul® = vl = () Da¥)D)?,

Thus, ul® * 1% = (u* )10
Example 3.2. Let f =e3oe?o0e3€EandletB =
{a, b}. The length of f is 18, and we write f(x) =
x18 = ((x3)?)3 = xM, Let u = ((a®)?)% Since
a € B SR, and [a] = 0, we have that a®> € R and
[a?] = 0. This implies that a3 = a?a € R and
[a3] = 0. Next, (a®)? € R and [(a®)?] = 0. This,
together with a® € R, implies that ((a)®)3 € R and
[(@®)3]=0,and so, u € R and [u] = 0.

Now, we calculate ul® = ((u2)?)3 as follows:
u?=uxru=u?and [u?] =0;
w=uwtru=u?xu=1ud

= (@) = (@)W,
@?)? = @)@ » (@)D = (@)HO;
(@)HH? = ((a®)HD « ((a®)HW
= (((@®**H®;
(@)D = (((@HHD + ((a®)H D
= ((a)DHHD = (a(l))“) —q®.

We see that [ul8] = 2, while [u] = 0.

In the same way, for v = ((b3)3)?2, we obtain
that v1® = b2,

The previous calculations imply that

ul® x pl8 = a@ « p@ = (ab)@.

In the calculation of (u * v)18, we have:
uxv=uv; (u*v)} =)= v’
((w*v))Z = (Wv)*)? = (wv)*)?; and
(u*v):? = (w)*)*)? = (w)*)?*)*

= (uv)®.

Since (ab)® # (uv)M, it follows that

ul® x pl8 = (uxv)ls

We see that the groupoid powers in the pre-
vious examples are not irreducible, and moreover,
the groupoid power x™ = (xP)? has (x9)? as its
part, i.e. (x4)? € P(x™). That is why we consider a
special class of groupoid powers, called simple.

We say that a groupoid power x™ is complex,
if x™ = ((xP)")? for some p,q =2 andr =1, and
P(x™) contains (x)?(x")? or (x")1(x)1. We say
that a power x™ is simple, if it is not complex.

Irreducible groupoid powers are simple. Since
any power x™, for a prime n, is irreducible, it fol-
lows that it is simple.

M;-FREE GROUPOIDS

Let f = gh € E\{e}. For a given groupoid
G = (G,)etT(f,G) S G X G be defined as:

T(f,6) = {(g(w), h(W)|u € G}.
With the notation f(x) = x™ = xPx4,
T(f,6) = {(wP,u?)|u € G}.

Theorem 4.1 Let f = gh, g, h € E\{e} and withthe
notation f(x) = x™ = xPx4, let a groupoid H =
(H,") satisfies the following conditions.
(i) Every divisor chainin H isfinite.
(i) If x™=y™inH, thenx = y.
(iii) If xy =uv inH, and xy # z" for each z € G,
thenx =uandy = v.
(iv)Ifx" =yzinHand (y,z) € T(f, H), thenthere
are u,v € H,sothatx = uv, y =u™ andz =v".

Then, the groupoid H is M;-free and the set B
of primesin H is nonempty and is the unique basis
of H.

Proof. The proof is almost the same as the proof of
Proposition 2.3 from [4], which is in fact Theorem
4.1 for f = e?, i.e. for the power x2. The only dif-
ference is the following.

The conditions (ii), (iii) and (iv), imply that,
for the power x2, any element u € H has at most
three divisors (shown in [4]), while for any other
power, any element u € H has at most four divisors.
The proof of this for a power different than x? is as
follows. Letu € H.

If u is prime, then it has O divisors. If u is not
prime, we consider two cases.

Case 1. Forany x € H, u # x™. Then, the condition
(iii) implies that u has at most two divisors.

Case 2. For some x € H, u = x™ = xPx9. The con-
dition (ii) implies that the element x is unique. If x
is prime and u = yz, then (y,z) € T(f,H) would
imply that there are v,w € H, so that x = vw, that is
not possible. Hence, for x prime, u has at most two
divisors. If x is not prime, i.e. if x = vw, then u =
x™ = xPx? = v™w™, and conditions (ii) and (iv) im-
ply that u has at most four divisors. m

Theorem 4.2 If f(x) = x™, and ul! = u" for every
u € (R(f, B),*), then (R(f, B),*) satisfies the con-
ditions (i) to (iv), from Theorem 4.2, and so it is M-
free with basis B.

Proof. Let x™ = xPx4,

If x x y = z,then |z| > |x|, |z| > |y|, and this
implies that R satisfies (i).

If xI' =y, then x™ = y™ in F,and so x = y.
Hence, R satisfies (ii).
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If x*xy=uxvandx=*y =z foranyz e
R, then min{[x],[y]} = 0 = min {{u], [v]}. This
implies that x * y = xy, u * v = uv, and xy = uv
in F. So, x =u and y = v. Hence, R satisfies the
condition (iii).

Letx =y=x*zand (y,z) € T(f,R).

If min{[y], [z]} = 0, then

xXPxl=x"=xl'=y*xz=1yz
and so, (y,z) € T(f,R). Hence, min{[y], [z]} > 0,
and this implies that there are u, v € R, such that
y=u"=ul, z=v"=v and x" = (u*v)",
i.e. x = u * v. Hence, R satisfies (iv). m
Theorem 4.3 Let f € E beasimplegroupoid power,
with f(x) = x™. Then, for every u € (R(f,B),%),

ul' = um.

Proof. By Proposition 3.9 it is enough to consider
x € R with [x] = 0. We will show that x! = x¢, for
any part x¢ of x™.
(1) Since [x] = 0, it follows that x! = x * x = x2.
(2) Let x!t = xt, for any part x¢ of x™ with t < k.
(2.1) Let x* = x9x* be a part of x™ with g < s.

Then, xk = x% % x5 = x7 x5,

We will show that min {[x9],[x°]} = 0,
which implies that x¥ = x*. Assume contrary, that,
x4 =u" and x5 =v" for some u,v € R. Since
[x] =0 and k <n, it follows that 2 < q,s < n.
This, implies that, x = u™ and x = vP for some
m,p = 2,andu™ = (u™)?, v™ = (vP)%, and we ob-
tain that

z" = (z™)1 = (zP)" .

Since g < s, it follows that z™ = (z™)? = (zP)5,
z™ = (zP)" and z° = (z")4. With all this, we have:
x™ = ((xP)")%and x9x5 = x9(x")9 is a part of x™,
i.e. the power x™ is not simple. This is a contradic-
tion.

(2.2) The proof that x¥ = x*, for x* = xSx9 with
q < s is the same as the proof in (2.1).

(2.3) Letx* = x9x5 be a part of x™ with ¢ = s, but
possibly different powers x%, x5, and let x9 = u™
and x* = v™ forsome u, v € R. Similarly asin (2.2),
we obtain that, x = u™ = vP, for some m,p = 2,
and u™ = (@W™)4, v™* = (vP)%. Now, g =s and
sp =n=qm, imply that p = m. This, together
with u™ = v? in F implies that u = v and z™, zP
are the same powers. Next, (u™)? = (v?)% in F im-
plies that z49, z* are the same powers. All this implies

that, x™ = ((xP)1)? and x9x7 = x9(x1)4 is a part
of x™, i.e. x™ is not simple. Hence, [x?] =0 or
[x5] = 0,and x¥ = x*. m

The following generalization of Theorem 1
from [4], follows from Theorems 4.2 and 4.3.
Theorem 4.4 If f € E isa smple groupoid power,
then (R(f, B)*) is My-free with basis B, and satis-
fies the conditions (i), (ii), (iii) and (iv) from Theo-
rem4.l. m

The next theorem characterizes Mj-free
groupoids, for a simple power f, and it is a general-
ization of Theorem 2 from [4] and Theorem 1.1. Its
proof follows from Theorems 4.1, 4.2 and 4.3.
Theorem 4.5 Let f € E be a simple groupoid po-
wer. Agroupoid H = (H,") is My-freeif and only if
it satisfies the conditions (i), (ii), (iii) and (iv) from
Theorem4.1. Then, the set B of primesin H isnon-
empty and isthe unigque basisof H. m
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3A CJIOBOJIHU T'PYIIOUHU CO (xy)™ = x"y"

Jon4o Tumosckn, [Fopiu Yynona

MaxkenoHcka akajgeMuja Ha HaykuTe U ymetHocture, Ckomje, PenmyOnuka Makenonuja

Bo tpynosure [3,5,6,8,9], UynoHa co copabOTHUIIMTE TH HUCTPaXKyBa CI000IHUTE 00jeKTH BO MHOTyoOpasuja
IPYNOHIM KOH 33J0BOJIyBaaT HEKOHM WACHTUTETH Mely rpyrnouanu creneHu. CrnobomHu 06jekTH BO MHOTYOOpa3ueTo
rpynouau aeguHUpaHo co uaeHtuteToT (xy)? = x2y? ce pasraenysanu Bo TpyaoT [4]. IIpen noseke ox 20 roaunu,
3aemHO co mpodecop UynoHa, 1o0OMBME KAHOHHYEH OMUC Ha CI000AHU 00jeKTH BO MHOT'YOOPa3HETO IPYMOUIN KOU IO
3aJJ0BOJIyBaatr uAeHTUTETOT (xy)™ = x™y™ 3a Hekou rpynougau creneHu x". OBoj pe3yirar He Oelie myOJUKyBaH, a
NpalamkeTo 32 HAOramke KAHOHWYCH OIMKC Ha CIO0O0HM IPYNOHIH 3a MPOM3BOJICH IPYIOHICH CTENCH X™ € ceyIuTe
OTBOpeHO. Bo 0BOj Tpyx € naieHo Mao ono0pyBamke Ha pe3ynTaToT o npex 20 TOOHHH, OTHOCHO € JaJeH KaOHMYEeH
OIMKC Ha CJIO0OJHU TPYHOHAM BO MHOIyOOpa3sHeTo Tpymouau AepUHHPAaHO co uaeHtHteToT (Xxy)™ = x"y", 3a
€MHOCTaBHHU TPYIOUAHH CTETICHH X". 3a TaKBH CTCMEHH, CIO00JHUTE IPYMONIH CE KapaKTepU3UPaHU CO MOMOII Ha
WH]eKTHBHUTE TPYIIOUIN O] TOa MHOTyoOpasue.
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