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We introduce laconic varieties and algebras, inspired by a closely related notion in monoids. After
providing basic properties of laconic algebras, we define upper distortion functions for laconic subalgebras

and apply it to the Membership Problem.

Key words: Membership Problem, distortion function, laconic variety

INTRODUCTION

Graded monoids were introduced in [8]
by Margolis, Meakin, and the author as a
tool for proving the decidability of certain
instances of the Membership Problem in sub-
monoids of groups, which in turn, by earlier
results of Ivanov, Margolis, and Meakin [6],
implied the decidability of the Word Problem
in certain one-relator inverse monoids. Re-
cently, Silva and Zakharov [10] used graded
monoids in relation to algorithmic problems
in virtually free groups. The notion we
are introducing here, laconic algebra, is not
exactly a generalization of the notion of a
graded monoid to other varieties, but it is
closely modeled on it. One advantage of the
slightly changed approach is that the new no-
tion is independent of the choice of generat-
ing sets (for graded monoids one had to be
careful not to include the identity in the gen-
erating set), which makes some of the discus-
sion smoother. On the other hand, there are
no laconic monoids, so something is lost in
this exchange too. The idea behind the ap-
proach is very simple — in some algebras, one
can tell that some elements cannot be equal
just by looking at the lengths of the terms
that represent them.

After introducing laconic algebras and
varieties, and providing some basic gen-
eral properties in Section 2, we define up-
per distortion functions in Section 3, which

are related to the corresponding notion in
graded monoids, and show how upper distor-
tion can be applied to solve some instances
of the Membership Problem. We end with a
simple example.

DEFINITION AND BASIC
PROPERTIES

We start by defining laconic algebras
and varieties, and establishing some of their
basic properties.

Definition 2.1 (Laconic algebra/variety).
Let V be a variety. An algebra A in V is
laconic if, for every free algebra F of finite
rank in V, every homomorphism ¢ : F — A,
and every element a in A, the fiber ¢7(a) is
finite.

The variety V is laconic if it contains at
least one nonempty laconic algebra.

Recall that, in a variety without constants,
the free algebra of rank 0 is the empty alge-
bra, which is, vacuously, laconic. This (and
other reasons) is why the definition insists on
the existence of a nonempty laconic algebra.

Example 2.1. The variety of semigroups is
laconic. Consider the free semigroup of rank
1, namely N*. Let X be finite, ¢ : X* — N*
a homomorphism from the free semigroup
X to NT, and « € NTt. No words over
X of length larger than a can be mapped
to a under ¢. Since there are only finitely



116

Zoran Sunié

many words over X of length at most a,
the fiber ¢~'(a) contains only finitely many
words. Thus, N* is a laconic semigroup.

This example indicates why we use the
term laconic — any element in a laconic semi-
group is represented by only a few (finitely
many) words.

The variety of monoids is not laconic.
There are laconic varieties with constants.
For instance, the variety of semigroups with
a “central constant” ¢, defined by the identi-
ties x(yz) = (zy)z and cx = xc, is laconic.

Example 2.2. Many of the varieties of
grupoids studied by Cupona, his collab-
orators, Celakoski, Dimovski, Markovski,
Janeva, Ili¢, and their students, are laconic.
For instance, the variety of grupoids defined
by a single identity of the form (zy)" = 2™y",
studied in |2, 4], is laconic, and so are the va-

rieties of monoassociative and biassociative
grupoids [3, 5.

Example 2.3. In fact, any variety defined
by balanced identities is laconic. In such a
variety, the free algebra F; of rank 1 is la-
conic, since any element of length at least k
in any term algebra maps to an element of
(term) length at least k in Fy (more on term
algebras and lengths later).

Example 2.4. The identities defining la-
conic varieties do not need to be balanced.
For instance, the variety of left zeros, defined
by the identity zy = =z, is laconic. In fact, all
algebras in this variety are laconic, since all
algebras in this variety are free, all maps be-
tween them are homomorphisms, and the f.g.
free algebras are precisely the finite ones. Re-
lated examples of laconic varieties with non-
balanced identities are the varieties of k-left-
zero semigroups (k > 0), studied in [9]. For
a laconic variety of semigroups, only these
two options are available: either it is defined
by balanced identities or all of its f.g. alge-
bras are finite. There are laconic varieties
of grupoids with non-balanced identities and
infinite f.g. free algebras.

Proposition 2.1 (Closure properties). Let
V be a laconic variety.

(a) The subclass of laconic algebras in V
15 closed under subalgebras.

(b) The subclass of laconic algebras in 'V is
closed under inverse images.

(¢) The subclass of laconic algebras in'V is
closed under arbitrary products.

(d) Any product in V in which at least one
factor is laconic is itself laconic.

(e) All free algebras in V' are laconic.

(f) If A is laconic and there exists a ho-
momorphism 1 : B — A, then B is laconic.

Proof. (a) Let A be a laconic algebra and
B < A. Any homomorphism ¢ : F — B
from a free algebra F of finite rank to B is
a restriction (in codomain) of the homomor-
phism ¢' : F — A, where, for all f € F, we
have ¢'(f) = ¢(f). Every ¢-fiber of an ele-
ment in B is a ¢/-fiber, and since A is laconic,
any such fiber is finite. Thus B is laconic.
(b), (¢), (d), and (e) are corollaries of (f).
(f) Let ¢ : F — B be a homomorphism
from the free algebra F of finite rank to B.
Since A is laconic, all fibers of the homo-
morphism ¢ : F — A are finite. For any
element b in B, the ¢-fiber of b is a subset of
the ¥ ¢-fiber of ¢(b), which is finite. Thus, B
is laconic. 0

Corollary 2.2. A variety V is laconic if and
only it its free algebra of rank 1 1s laconic.

The property of being laconic is local.

Proposition 2.3 (Laconic is local). An al-
gebra A in a laconic variety V is laconic if
and only if every finitely generated subalgebra
of A s laconic.

Proof. For the forward direction, recall that
the class of laconic algebras is closed under
subalgebras.

For the backward direction, assume that
all finitely generated subalgebras of A are
laconic. Let ¢ : F — A be a homomorphism
from the free algebra F of finite rank to A.
Since F has finite rank, the subalgebra ¢(F)
of A is finitely generated, which implies that
¢(F) is laconic. Every ¢-fiber of an element
in A is either empty or a fiber of an element
in ¢(F). In both cases, the fiber is finite.
Thus, A is laconic. ([l

Corollary 2.4. The class of laconic algebras
in a laconic variety V is closed under directed
UNLONS.

The subclass of laconic algebras in a la-
conic variety is not, in general, closed un-
der homomorphic images. For instance, fi-
nite semigroups are not laconic, but they are
images of free semigroups, which are laconic.
However, the property is preserved under ho-
momorphic images, provided the fibers of the
homomorphism are finite.

Proposition 2.5 (Laconic images). An al-
gebra A in a laconic variety V is laconic if
and only if it is a homomorphic image, with
finite fibers, of a laconic algebra.

Proof. For the forward direction, observe
that the identity map has finite fibers.
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For the backward direction, assume that B
is a laconic algebra and ¢ : B — A is a sur-
jective homomorphism with finite fibers. Let
¢ : F — A be a homomorphism from the free
algebra F of finite rank to A. By the pro-
jective property of the free algebra F, there
exist a lift ¢’ : F — B, such that ¢ = ¢¢'.
The fibers of v are finite by assumption, and
the fibers of ¢ are finite, since B is laconic.
Thus, A is laconic. O

UPPER DISTORTION AND
APPLICATION TO THE
MEMBERSHIP PROBLEM

In this section we discuss algorithmic
issues and, accordingly, limit our attention
to finitely generated algebras in laconic va-
rieties of finite type. Parts of the discussion
are valid in wider settings, but we will not
attempt to indicate such moments.

Let V be any variety of finite type and X
a finite set. A general way to construct the
f.g. free algebra F(X) in V is by using the
set T(X) of terms over X, and the corre-
sponding term algebra T(X) (see [1]). The
elements of T(X) are classes of terms that
are identified by the identities of V. For a
term 7 in T(X), the element of T(X) repre-
sented by 7 is denoted by 7. The length of
a term 7 in T(X), denoted 7|, is the total
number occurrences of k-ary operation sym-
bols, for £k > 1 (symbols for constants are
not counted). To emphasize the dependence
on X, we sometimes call this length the X-
length and we say X-term for an element of
T(X) (especially when there are other term
algebras and bases around). The set of all
X-terms of X-length no greater than n is de-
noted by 7,(X). The length of an element
7 in the term algebra T(X), denoted |T|x, is
the length of the shortest term in the class of
7. The set of all elements in the term algebra
T(X) of length no greater than n is denoted
by T, (X). Since X and the type are finite,
both 7,,(X) and T, (X) are finite and, for fu-

ture reference, we note that 7,,(X) = T, (X).

Let A be a f.g. algebra in the variety V.
One of the ways to give a representation of
the algebra A is through a surjective homo-
morphism 9 : T(X) — A from a term alge-
bra T(X) over a finite basis X, along with a
description of the corresponding congruence
0 on T(X) such that T(X)/0 = ¢(T(X)) =
A. Concretely, if we are given a finite set R of
pairs in T(X) that generates the congruence

0, we say that the algebra A is finitely pre-
sented by the pair (X, R). The Word Prob-
lem for the finite presentation of A given by
(X, R) asks for an algorithm deciding, for any
two terms 7 and 7 in T'(X), if 71675, that
is, if ¢(71) = ¥(72). We take a more gen-
eral view of the Word Problem as follows.
The elements of the algebra A may be repre-
sented in any particular way (sets, functions,
diagrams, graphs, matrices, or any other con-
venient construction). Note that defining ¢
amounts to naming a finite generating sys-
tem for A (we say system rather than set,
since we may choose, on purpose or unknow-
ingly, the same element from A several times
in the system). The Word Problem then
asks for an algorithm deciding, given any two
terms 7 and 7 in T(X), if ¥(71) = ¥(Ta).
When such an algorithm exists, we say that
the Word Problem for A is decidable.

Let a f.g. subalgebra B of the f.g. algebra
A be given by a finite set T" of terms in T'(X)
such that ¢(7T) generates B. The Member-
ship Problem for B in A asks for an algo-
rithm deciding, given any term 7 in 7'(X), if
Y(T) € B. When such an algorithm exists,
we say that the Membership Problem for B

in A is decidable. It is known that the decid-
ability of the Word Problem and the Mem-
bership Problem do not depend on the choice
of the homomorphism v (they are properties
of the algebras, not of the representations).

Standing assumptions. We make several
standing assumptions.

We consider two varieties VV and V of fi-
nite types 2y and €2y, respectively, such that
Qw 2 Qy, the set of identities of W in-
cludes those of V, and V is laconic (a sim-
ple example to have in mind: W is the va-
riety of groups and V is the variety of semi-
groups). Let A be a f.g. W-algebra, X a
finite set, ¢ : T(X) — A a representation of
A and T = {7,..., 7.} a finite set of X-
terms. Since A can also be considered as a
V-algebra, we can consider the V-subalgebra
of A given by B = (¢¥(71),...,%¥(7m))y. Let
Y ={y1,...,ym}, with the obvious bijection
to T, and define a representation ¢ : T(Y) —
B by 6(y;) = v(ry), for i = 1,....m.

We are interested in the Membershlp
Problem for B in A, that is, given arbitrary
T € T(X), we want to know if (1) € B. In
general, the terms in 7(X) are of type Quw
and those in T'(Y') are of type Qy. Thus, the
terms 7.7,...,7, may use operation sym-
bols that are not in €2, and we have a slightly
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extended view of the Membership Problem,
which in its standard setting has W = V.

Definition 3.1 (Upper distortion). Stand-
ing assumptions apply. If B is laconic, the
actual upper distortion function for B in A,
vyith respect to ¢ and ¢, is the function
J: N — N defined by

f(n) =max{ [tly : teT(Y),

F e ¢ (Ta(X)) }. |

n upper distortion function for B in A

is any function f : N — N that bounds the
actual distortion function from above.

Let us quickly verify that the definition of
the actual upper distortion function f makes
sense. The set T,,(X) is finite, which makes
(T, (X)) finite as well. Since B is laconic
the set ¢~1¢(T, (X)) is finite, which means
that the maximum exists.

For better understanding, let us also parse
the meaning of any upper distortion func-

tion f. The set (T,(X)) = Y(T.(X)) is
the finite set of elements in A that can be
represented by an X-term of X-length no

greater than n. The set ¢~14 (T, (X)) is then
the finite set of all elements in the term al-
gebra T(Y') that represent the elements in
B Ny(T,(X)). Since none of the elements
in ¢~'(T,(X)) has Y-length greater than
f(n) < f(n), we have

BOY(T(X)) = ¢~ ' ¢(Ta(X)) C

(T sy (V) = STy (Y))-

In other words, every element of B, repre-
sentable by an X-term of length at most n,
must be representable by a Y-term of length
at most f(n). We could say the upper distor-
tion gives an upper bound on the “distortion
in length” from a representation of the ele-
ments in B by X-terms (external generators,
operation symbols in ) to a representa-
tion by Y-terms (internal generators for B,
operation symbols from y). With this un-
derstanding the next results is practically a
tautology.

Proposition 3.1 (Membership Problem).
Standing assumptions apply. Assume fur-
ther that the Word Problem for A (as a V-
algebra) is decidable, B is laconic, and there
is a computable (recursive) upper distortion
function f for B in A with respect to ¢ and
¢. Then, the Membership Problem for B in
A is decidable.

Proof. We present an algorithm solving the
Membership Problem.

Because Y and the type 2y are finite, we
may list all Y-terms by length (first all with
length 0, then those with length 1, and so
on). For every Y-term t(yi,...,yn) in this
list, we have

¢(t<y17 S 7ym)) -

t(¢<y1)7 ce 7¢(ym)) =

tW(T1), .., 0(Tm)) = V(E(T1, . Tm)),
that is, the Y-term ¢(y1,...,ym) repre-

sents the same element in B as the X-
term (7, .. does.  For every term

t(y1,-..,Ym) in the list of Y-terms ordered
by length, consider the corresponding X-
term t(7y,...,7,). We can, by the decid-
ability of the Word Problem for A, decide
if t(7y,...,7m) and 7 represent the same el-
ement of A. If, at any point, the answer is
yes, we may stop and declare that ¢(7) is in
B. Assume that the X-length of 7is n. Once
we check all terms in Ty, (Y") and if we still
do not have a positive answer, we may stop
and declare that ¢ (7) is not in B. Indeed, if
¥(T) € B, then

U(T) € BNY(Th(X)) € o(Tym)(Y)),
which means that, once we verify that (7) ¢

ATy (Y)), we know that ¢(7) € B. O

The previous proposition seems difficult to
use, since it is not always clear how one can
find an upper distortion function. The fol-
lowing proposition says that if one under-
stands a laconic homomorphic image, which
is presumably simpler and easier for analysis,
one can just lift any upper distortion function
found for the image and use it.

'aTm

Proposition 3.2 (Lifting). Standing as-
sumptions apply. Let o : A — A’ be a sur-
jective W homomorphism, ag : B — B’ its
restriction to a surjective V-homomorphism,
where B’ = «(B) = ag(B). The term al-
gebra T(X) represents the elements of A’
through at) and the term algebra T(Y') repre-
sents the elements of B’ through ap¢. If B’
15 laconic, so s B, and any upper distortion
function f' for B' in A’, with respect to ax
and ag®, is an upper distortion function for
B in A, with respect to ¢ and ¢.

Proof. The algebra B is laconic as an inverse
image of the laconic algebra B’. Let ¢ be an
element of the term algebra T(Y'). We have

fe ¢ H(T (X))
— (7)€ (BN (T, (X))
— apo(P) € (T, (X))
— 7€ (ap0) (0r)(Tu(X)),

Contributions, Sec. Nat. Math. Biotech. Sci., MASA, 41(2), 115-120 (2020)
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which  shows that ¢ '¢(T,(X)) C
(apd) Ha)(T,(X)) and, therefore f(n),
the maximum length of an element in
¢ (T, (X)), is smaller than or equal to

f'(n), the maximum length of an element in
(apd) Ha))(T,(X)). Thus, for any upper
distortion function f’ for B’ in A’, we have
f<psr. 0

Our final result provides a way to adapt
a given upper distortion function from one
representation to another. First a simple ob-
servation is in order. Let ¢ : T(X) — A
and ¢ : T(X’) — A be two representations
of A. Let M be the smallest number such
that, for each letter ' € X', there exists an
X-term 7, of length at most M such that
¥(Ty) = ¢'(2') (such an M must exist, since
X' is finite). Let K be the largest arity of
a symbol in Qyy. Then, for any X'-term 7’
of length at most n, there exists an X-term
of length at most (M(K — 1) + 1)n + M
that represents the same element in A as
Y'(7"). In other words, there exists a linear
function gx/ x such that, for all n, we have
Y(Tu(X") € ¥(Ty,, (X)) Analogous
linear function exists for any rewriting from
one representation to another (from one fi-
nite generating system to another).

Proposition 3.3 (Change of representa-
tion). Standing assumptions apply. Let i)' :
T(X) - A and ¢ : T(Y) — B be
additional representations of A and B, re-
spectively, and let B be laconic. If f is
an upper distortion function for B in A
with respect to ¢ and ¢, then ', defined by
f'(n) = gvy (f(9xx(n))), is an upper dis-
tortion function for B in A with respect to
Y and ¢'.
Proof. For a term t' in T(Y'), if ¢ €
(¢) "Y' (Tn(X"), then ¢'(#) € B N
¢'(Tw(X')), which implies that

¢/(t/) € B mw(Tgxlx(n)(X)) g

(T p(gr ) (Y)) €

P'(Tyyyrfigxr x ) (Y')),
and  this 1mp1ies that

ly < gviv(flgxrx(n))). o

Example 3.1. Let W be the variety of
groups, V the variety of semigroups, X =
{z,y,2}, Y = {yi.y2,43}, A the group
with presentation (z,y,z | vy = 2y~ 12%z),
B the subsemigroup of A generated by
{z,2y,y°27}, ¢¥ : T(X) — A the obvious

group representation of A, and ¢ : T(Y) —
B the semigroup representations of B given

by ¢(y1) = z, d(y2) = zy, dlys) = v’z ".
We want to solve the Membership Problem
for B in A.

Let M, = (39), M, = (1), A" =
(M, M,), the subgroup of SLy(Z) gener-
ated by M, and M,, and « the surjective
group homomorphism defined by a(z) = M,
and a(y) = a(z) = M,. To verify that «
defines a homomorphism we need to check
that M, M, = M;MI, which does hold. Let
B = a(B) = (Mw,MxMy,My2>y7 that is,
B’ is the semigloup generated by the matri-
ces My = (39), MyM, = (3%) and M} =
(42). Let X' = .y}, ¢/ ¢ T(X') — A’
be the group representation of A’ given by
w’(f) = Mwa ¢/(y/) = MZN Y' = {yi’yéayéh
and ¢’ : T(Y') — B’ the semigroup rep-
resentatlon of B’ given by ¢'(y)) = M,,
¢'(yy) = (b/(y:a) My

An easy mductlon on the length shows
that if 7/ is an X'-term of length at most
n, and Y/(7) = (21), then [a| + |b| < 3.
On the other hand, by induction on length,
if ' is a Y’ term of length at least n’ and
¢ (f) = (b)), then |a| + |b| > n'. Therefore,
(&) (T, (X")) C Tsnsr(Y'). This shows
that the fibers of ¢’ are finite. Since the
fibers of ¢ are finite and the free semigroup
T(Y’) is laconic, the semigroup B’ is laconic
by Proposition 2.5. Moreover, the function
f(n) = 3" is an upper distortion function
for B’ in A’ with respect to ¢’ and ¢'.

By Proposition 3.3 and the decidability of
the Word Problem in one-relator groups [7],
we can explicitly determine a computable up-
per distortion function for B in A’ with re-
spect to a1y and age@, which we can lift, by
Proposition 3.2, to an upper distortion func-
tion for B in A with respect to ¢ and ¢.
Thus, by Proposition 3.1, the Membership
Problem for B in A is decidable.
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JIAKOHCKUM MHOI'YOBPA3BWUJA U ITPOBJIEMOT HA IIPUITAJHOCT
3opan Ilyauk
Omnenenne 3a Maremaruka, Xodgerpa Yuusepautet, Xemtcren, tbyjopx, CAJL
Bo cnomen na npogecop Lopéu Qynona

I'u BOBemyBaMe momMuTe HA JTAKOHCKHU aJIreOpu ¥ MHOTYOOpa3uja, MHCIUPUPAHU OJ OJIM30K MOUM Kaj
vonomaure. OTKAKO Ke I'M /1ajieMe OCHOBHUTE OCOOMHU Ha JIAKOHCKHUTE ajredpu, gedunupame QyHKIUH HA
TOpHA AUCTOP3HUja HA, JIJAKOHCKUTE TOJAJTeOpY U TH MPUMEHyBaMe KOH MPOOJIEMOT Ha, PUIIATHOCT.

Kuayuau 360poBu: mpobiieM Ha IPHUIIAIHOCT, TOPHA AUCTOP3H]ja, JAKOHCKO MHOIyoOpas3ne

Bu cakan na ja mckopmcTaM 0Baa IMPWJINKA Ja ja MCTaKHAM KJIYYHATa YJI0Ta IITO ja MMAIlle
npodecopor UynoHa Bo MOJOT MaTeMaTUIKU Pa3Boj. Bo Tek Ha dermpu roannu, 6B HETOB CTYIEHT
W acHCTEHT W, 10 CPeKHa OKOJTHOCT, Ce 3/100MB €O JparoreHaTa TPHUBHUIETHja Ja WMaM MOCTOjaH
MpUcTan 70 HEroBaTa KaHIEJapHuja, JI0 TOJUNNATE CO KHUTH W, HAJBAXKHO, O HEMOBUTE MUCTU, U
ceTo Toa Ge3MepHO o BnuBaB. MHOry Herra Om MOXKejie Ja Ce CIIOMHAT, HO K& Ce OrpDaHuYaM
caMO Ha CJIeJIHABA BUIbETa. De3MaJiKy IIpesi TpueceT TOJIMHM, I'0 OJP2KaB CBOETO MPBO IIPEIaBaIHE
na meryuapomua xoudepennuja, so llorcmam, T'epmanuja. Be;LHam [0 IPEJABABETO, YIECHUK HA
roupepentujara, npodecop Kaapsu og Yuusepaureror Bo Tapry, upujme u me nparma ,,daaun cre
crynenT Ha Yymona?“ OILFOBOpI/IB JIeKa CyM, Ha IITO TOj camo pede ,JCeKoramr Ke To MPerno3HaeTe
JIABOT TI0 Tpararta mro ja octasa.” Hukoraln moBTopHO BO Kapuepara He J0OUB KOMILIUMEHT IIITO
TOJIKY Me U3pa/iyBaJj. Bo uMeTo Ha cuTe IITO Cé yIITe ja 4yBCTBYBAaT U IIEHAT Taa Tpara, 6sarojapam
npodecope Uymona.
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