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INTRODUCTION

Graded monoids were introduced in [8]
by Margolis, Meakin, and the author as a
tool for proving the decidability of certain
instances of the Membership Problem in sub-
monoids of groups, which in turn, by earlier
results of Ivanov, Margolis, and Meakin [6],
implied the decidability of the Word Problem
in certain one-relator inverse monoids. Re-
cently, Silva and Zakharov [10] used graded
monoids in relation to algorithmic problems
in virtually free groups. The notion we
are introducing here, laconic algebra, is not
exactly a generalization of the notion of a
graded monoid to other varieties, but it is
closely modeled on it. One advantage of the
slightly changed approach is that the new no-
tion is independent of the choice of generat-
ing sets (for graded monoids one had to be
careful not to include the identity in the gen-
erating set), which makes some of the discus-
sion smoother. On the other hand, there are
no laconic monoids, so something is lost in
this exchange too. The idea behind the ap-
proach is very simple � in some algebras, one
can tell that some elements cannot be equal
just by looking at the lengths of the terms
that represent them.
After introducing laconic algebras and

varieties, and providing some basic gen-
eral properties in Section 2, we de�ne up-
per distortion functions in Section 3, which

are related to the corresponding notion in
graded monoids, and show how upper distor-
tion can be applied to solve some instances
of the Membership Problem. We end with a
simple example.

DEFINITION AND BASIC

PROPERTIES

We start by de�ning laconic algebras
and varieties, and establishing some of their
basic properties.

De�nition 2.1 (Laconic algebra/variety).
Let V be a variety. An algebra A in V is
laconic if, for every free algebra F of �nite
rank in V , every homomorphism φ : F→ A,
and every element a in A, the �ber φ−1(a) is
�nite.
The variety V is laconic if it contains at

least one nonempty laconic algebra.
Recall that, in a variety without constants,

the free algebra of rank 0 is the empty alge-
bra, which is, vacuously, laconic. This (and
other reasons) is why the de�nition insists on
the existence of a nonempty laconic algebra.

Example 2.1. The variety of semigroups is
laconic. Consider the free semigroup of rank
1, namely N+. Let X be �nite, φ : X+ → N+

a homomorphism from the free semigroup
X+ to N+, and a ∈ N+. No words over
X of length larger than a can be mapped
to a under φ. Since there are only �nitely
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many words over X of length at most a,
the �ber φ−1(a) contains only �nitely many
words. Thus, N+ is a laconic semigroup.
This example indicates why we use the

term laconic � any element in a laconic semi-
group is represented by only a few (�nitely
many) words.
The variety of monoids is not laconic.

There are laconic varieties with constants.
For instance, the variety of semigroups with
a �central constant� c, de�ned by the identi-
ties x(yz) = (xy)z and cx = xc, is laconic.

Example 2.2. Many of the varieties of
grupoids studied by �Cupona, his collab-
orators, Celakoski, Dimovski, Markovski,
Janeva, Ili�c, and their students, are laconic.
For instance, the variety of grupoids de�ned
by a single identity of the form (xy)n = xnyn,
studied in [2, 4], is laconic, and so are the va-
rieties of monoassociative and biassociative
grupoids [3, 5].

Example 2.3. In fact, any variety de�ned
by balanced identities is laconic. In such a
variety, the free algebra F1 of rank 1 is la-
conic, since any element of length at least k
in any term algebra maps to an element of
(term) length at least k in F1 (more on term
algebras and lengths later).

Example 2.4. The identities de�ning la-
conic varieties do not need to be balanced.
For instance, the variety of left zeros, de�ned
by the identity xy = x, is laconic. In fact, all
algebras in this variety are laconic, since all
algebras in this variety are free, all maps be-
tween them are homomorphisms, and the f.g.
free algebras are precisely the �nite ones. Re-
lated examples of laconic varieties with non-
balanced identities are the varieties of k-left-
zero semigroups (k ≥ 0), studied in [9]. For
a laconic variety of semigroups, only these
two options are available: either it is de�ned
by balanced identities or all of its f.g. alge-
bras are �nite. There are laconic varieties
of grupoids with non-balanced identities and
in�nite f.g. free algebras.

Proposition 2.1 (Closure properties). Let
V be a laconic variety.

(a) The subclass of laconic algebras in V
is closed under subalgebras.

(b) The subclass of laconic algebras in V is
closed under inverse images.

(c) The subclass of laconic algebras in V is
closed under arbitrary products.

(d) Any product in V in which at least one
factor is laconic is itself laconic.

(e) All free algebras in V are laconic.

(f) If A is laconic and there exists a ho-
momorphism ψ : B→ A, then B is laconic.

Proof. (a) Let A be a laconic algebra and
B ≤ A. Any homomorphism φ : F → B
from a free algebra F of �nite rank to B is
a restriction (in codomain) of the homomor-
phism φ′ : F → A, where, for all f ∈ F , we
have φ′(f) = φ(f). Every φ-�ber of an ele-
ment in B is a φ′-�ber, and sinceA is laconic,
any such �ber is �nite. Thus B is laconic.
(b), (c), (d), and (e) are corollaries of (f).
(f) Let φ : F → B be a homomorphism

from the free algebra F of �nite rank to B.
Since A is laconic, all �bers of the homo-
morphism ψφ : F → A are �nite. For any
element b in B, the φ-�ber of b is a subset of
the ψφ-�ber of ψ(b), which is �nite. Thus, B
is laconic. �
Corollary 2.2. A variety V is laconic if and
only it its free algebra of rank 1 is laconic.

The property of being laconic is local.

Proposition 2.3 (Laconic is local). An al-
gebra A in a laconic variety V is laconic if
and only if every �nitely generated subalgebra
of A is laconic.

Proof. For the forward direction, recall that
the class of laconic algebras is closed under
subalgebras.
For the backward direction, assume that

all �nitely generated subalgebras of A are
laconic. Let φ : F→ A be a homomorphism
from the free algebra F of �nite rank to A.
Since F has �nite rank, the subalgebra φ(F)
of A is �nitely generated, which implies that
φ(F) is laconic. Every φ-�ber of an element
in A is either empty or a �ber of an element
in φ(F). In both cases, the �ber is �nite.
Thus, A is laconic. �

Corollary 2.4. The class of laconic algebras
in a laconic variety V is closed under directed
unions.
The subclass of laconic algebras in a la-

conic variety is not, in general, closed un-
der homomorphic images. For instance, �-
nite semigroups are not laconic, but they are
images of free semigroups, which are laconic.
However, the property is preserved under ho-
momorphic images, provided the �bers of the
homomorphism are �nite.

Proposition 2.5 (Laconic images). An al-
gebra A in a laconic variety V is laconic if
and only if it is a homomorphic image, with
�nite �bers, of a laconic algebra.

Proof. For the forward direction, observe
that the identity map has �nite �bers.
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For the backward direction, assume thatB
is a laconic algebra and ψ : B→ A is a sur-
jective homomorphism with �nite �bers. Let
φ : F→ A be a homomorphism from the free
algebra F of �nite rank to A. By the pro-
jective property of the free algebra F, there
exist a lift φ′ : F → B, such that φ = ψφ′.
The �bers of ψ are �nite by assumption, and
the �bers of φ′ are �nite, since B is laconic.
Thus, A is laconic. �

UPPER DISTORTION AND

APPLICATION TO THE

MEMBERSHIP PROBLEM

In this section we discuss algorithmic
issues and, accordingly, limit our attention
to �nitely generated algebras in laconic va-
rieties of �nite type. Parts of the discussion
are valid in wider settings, but we will not
attempt to indicate such moments.
Let V be any variety of �nite type and X

a �nite set. A general way to construct the
f.g. free algebra F(X) in V is by using the
set T(X) of terms over X , and the corre-
sponding term algebra T(X) (see [1]). The
elements of T(X) are classes of terms that
are identi�ed by the identities of V . For a
term τ in T(X), the element of T(X) repre-
sented by τ is denoted by τ . The length of
a term τ in T(X), denoted |τ |X, is the total
number occurrences of k-ary operation sym-
bols, for k ≥ 1 (symbols for constants are
not counted). To emphasize the dependence
on X , we sometimes call this length the X-
length and we say X -term for an element of
T (X) (especially when there are other term
algebras and bases around). The set of all
X -terms of X-length no greater than n is de-
noted by Tn(X). The length of an element
τ in the term algebra T(X), denoted |τ |X, is
the length of the shortest term in the class of
τ . The set of all elements in the term algebra
T(X) of length no greater than n is denoted
by Tn(X). Since X and the type are �nite,
both Tn(X) and Tn(X) are �nite and, for fu-
ture reference, we note that Tn(X) = Tn(X).
Let A be a f.g. algebra in the variety V .

One of the ways to give a representation of
the algebra A is through a surjective homo-
morphism ψ : T(X)→ A from a term alge-
bra T(X) over a �nite basis X , along with a
description of the corresponding congruence
θ on T(X) such that T(X)/θ ∼= ψ(T(X)) =
A. Concretely, if we are given a �nite set R of
pairs in T(X) that generates the congruence

θ, we say that the algebra A is �nitely pre-
sented by the pair (X,R). The Word Prob-
lem for the �nite presentation of A given by
(X,R) asks for an algorithm deciding, for any
two terms τ1 and τ2 in T (X), if τ 1θτ 2, that
is, if ψ(τ 1) = ψ(τ 2). We take a more gen-
eral view of the Word Problem as follows.
The elements of the algebraA may be repre-
sented in any particular way (sets, functions,
diagrams, graphs, matrices, or any other con-
venient construction). Note that de�ning φ
amounts to naming a �nite generating sys-
tem for A (we say system rather than set,
since we may choose, on purpose or unknow-
ingly, the same element from A several times
in the system). The Word Problem then
asks for an algorithm deciding, given any two
terms τ1 and τ2 in T (X), if ψ(τ 1) = ψ(τ 2).
When such an algorithm exists, we say that
the Word Problem for A is decidable.
Let a f.g. subalgebra B of the f.g. algebra

A be given by a �nite set T of terms in T(X)
such that ψ(T ) generates B. The Member-
ship Problem for B in A asks for an algo-
rithm deciding, given any term τ in T (X), if
ψ(τ ) ∈ B. When such an algorithm exists,
we say that the Membership Problem for B
inA is decidable. It is known that the decid-
ability of the Word Problem and the Mem-
bership Problem do not depend on the choice
of the homomorphism ψ (they are properties
of the algebras, not of the representations).

Standing assumptions. We make several
standing assumptions.
We consider two varieties W and V of �-

nite typesΩW andΩV , respectively, such that
ΩW ⊇ ΩV , the set of identities of W in-
cludes those of V , and V is laconic (a sim-
ple example to have in mind: W is the va-
riety of groups and V is the variety of semi-
groups). Let A be a f.g. W-algebra, X a
�nite set, ψ : T(X) → A a representation of
A, and T = {τ1, . . . , τm} a �nite set of X-
terms. Since A can also be considered as a
V-algebra, we can consider the V-subalgebra
of A given by B = 〈ψ(τ 1), ..., ψ(τm)〉V . Let
Y = {y1, . . . , ym}, with the obvious bijection
to T , and de�ne a representation φ : T(Y )→
B by φ(yi) = ψ(τ i), for i = 1, . . . ,m.
We are interested in the Membership

Problem for B in A, that is, given arbitrary
τ ∈ T (X), we want to know if ψ(τ ) ∈ B. In
general, the terms in T (X) are of type ΩW
and those in T (Y ) are of type ΩV . Thus, the
terms τ.τ1 , . . . , τm may use operation sym-
bols that are not in ΩV and we have a slightly
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extended view of the Membership Problem,
which in its standard setting has W = V .
De�nition 3.1 (Upper distortion). Stand-
ing assumptions apply. If B is laconic, the
actual upper distortion function for B in A,
with respect to ψ and φ, is the function
f̂ : N→ N de�ned by
f̂(n) = max{ |t|Y : t ∈ T (Y ),
t ∈ φ−1ψ(Tn(X)) }.
An upper distortion function for B in A

is any function f : N → N that bounds the
actual distortion function from above.
Let us quickly verify that the de�nition of

the actual upper distortion function f̂ makes
sense. The set Tn(X) is �nite, which makes
ψ(Tn(X)) �nite as well. Since B is laconic
the set φ−1ψ(Tn(X)) is �nite, which means
that the maximum exists.
For better understanding, let us also parse

the meaning of any upper distortion func-
tion f . The set ψ(Tn(X)) = ψ(Tn(X)) is
the �nite set of elements in A that can be
represented by an X-term of X-length no
greater than n. The set φ−1ψ(Tn(X)) is then
the �nite set of all elements in the term al-
gebra T(Y ) that represent the elements in

B ∩ ψ(Tn(X)). Since none of the elements
in φ−1ψ(Tn(X)) has Y -length greater than

f̂(n) ≤ f(n), we have

B ∩ ψ(Tn(X)) = φφ−1ψ(Tn(X)) ⊆
φ(Tf(n)(Y )) = φ(Tf(n)(Y )).
In other words, every element of B, repre-

sentable by an X-term of length at most n,
must be representable by a Y -term of length
at most f(n). We could say the upper distor-
tion gives an upper bound on the �distortion
in length� from a representation of the ele-
ments in B by X-terms (external generators,
operation symbols in ΩW) to a representa-
tion by Y -terms (internal generators for B,
operation symbols from ΩV). With this un-
derstanding the next results is practically a
tautology.

Proposition 3.1 (Membership Problem).
Standing assumptions apply. Assume fur-
ther that the Word Problem for A (as a W-
algebra) is decidable, B is laconic, and there
is a computable (recursive) upper distortion
function f for B in A with respect to ψ and
φ. Then, the Membership Problem for B in
A is decidable.

Proof. We present an algorithm solving the
Membership Problem.

Because Y and the type ΩV are �nite, we
may list all Y -terms by length (�rst all with
length 0, then those with length 1, and so
on). For every Y -term t(y1, . . . , ym) in this
list, we have
φ(t(y1, . . . , ym)) =
t(φ(y1), . . . , φ(ym)) =
t(ψ(τ 1), . . . , ψ(τm)) = ψ(t(τ 1, . . . , τm)),

that is, the Y -term t(y1, . . . , ym) repre-
sents the same element in B as the X-
term t(τ1, . . . , τm) does. For every term
t(y1, . . . , ym) in the list of Y -terms ordered
by length, consider the corresponding X-
term t(τ1, . . . , τm). We can, by the decid-
ability of the Word Problem for A, decide
if t(τ1, . . . , τm) and τ represent the same el-
ement of A. If, at any point, the answer is
yes, we may stop and declare that ψ(τ) is in
B. Assume that the X-length of τ is n. Once
we check all terms in Tf(n)(Y ) and if we still
do not have a positive answer, we may stop
and declare that ψ(τ) is not in B. Indeed, if
ψ(τ) ∈ B, then

ψ(τ) ∈ B ∩ ψ(Tn(X)) ⊆ φ(Tf(n)(Y )),

which means that, once we verify that ψ(τ) 6∈
φ(Tf(n)(Y )), we know that ψ(τ) 6∈ B. �

The previous proposition seems di�cult to
use, since it is not always clear how one can
�nd an upper distortion function. The fol-
lowing proposition says that if one under-
stands a laconic homomorphic image, which
is presumably simpler and easier for analysis,
one can just lift any upper distortion function
found for the image and use it.

Proposition 3.2 (Lifting). Standing as-
sumptions apply. Let α : A → A′ be a sur-
jective W homomorphism, αB : B → B′ its
restriction to a surjective V-homomorphism,
where B′ = α(B) = αB(B). The term al-
gebra T(X) represents the elements of A′

through αψ and the term algebra T(Y ) repre-
sents the elements of B′ through αBφ. If B′

is laconic, so is B, and any upper distortion
function f ′ for B′ in A′, with respect to αψ
and αBφ, is an upper distortion function for
B in A, with respect to ψ and φ.

Proof. The algebra B is laconic as an inverse
image of the laconic algebra B′. Let t be an
element of the term algebra T(Y ). We have

t ∈ φ−1ψ(Tn(X))

=⇒ φ(t) ∈ (B ∩ ψ(Tn(X)))

=⇒ αBφ(t) ∈ αψ(Tn(X))

=⇒ t ∈ (αBφ)−1(αψ)(Tn(X)),
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which shows that φ−1ψ(Tn(X)) ⊆
(αBφ)−1(αψ)(Tn(X)) and, therefore f̂(n),
the maximum length of an element in
φ−1ψ(Tn(X)), is smaller than or equal to

f̂ ′(n), the maximum length of an element in
(αBφ)−1(αψ)(Tn(X)). Thus, for any upper
distortion function f ′ for B′ in A′, we have
f̂ ≤ f̂ ′ ≤ f ′. �

Our �nal result provides a way to adapt
a given upper distortion function from one
representation to another. First a simple ob-
servation is in order. Let ψ : T(X) → A
and ψ′ : T(X ′) → A be two representations
of A. Let M be the smallest number such
that, for each letter x′ ∈ X ′, there exists an
X-term τx′ of length at most M such that
ψ(τx′) = ψ′(x′) (such an M must exist, since
X ′ is �nite). Let K be the largest arity of
a symbol in ΩW . Then, for any X ′-term τ ′

of length at most n, there exists an X-term
of length at most (M(K − 1) + 1)n + M
that represents the same element in A as
ψ′(τ ′). In other words, there exists a linear
function gX′,X such that, for all n, we have
ψ′(Tn(X ′)) ⊆ ψ(TgX′,X(n)(X)). Analogous
linear function exists for any rewriting from
one representation to another (from one �-
nite generating system to another).

Proposition 3.3 (Change of representa-
tion). Standing assumptions apply. Let ψ′ :
T(X ′) → A and φ′ : T(Y ′) → B be
additional representations of A and B, re-
spectively, and let B be laconic. If f is
an upper distortion function for B in A
with respect to ψ and φ, then f ′, de�ned by
f ′(n) = gY,Y ′(f(gX′,X(n))), is an upper dis-
tortion function for B in A with respect to
ψ′ and φ′.

Proof. For a term t′ in T (Y ′), if t′ ∈
(φ′)−1ψ′(Tn(X ′)), then φ′(t′) ∈ B ∩
ψ′(Tn(X ′)), which implies that
φ′(t′) ∈ B ∩ ψ(TgX′,X(n)(X)) ⊆
φ(Tf(gX′,X(n))(Y )) ⊆
φ′(TgY,Y ′f(gX′,X(n))(Y

′)),

and this implies that
|t′|Y ≤ gY,Y ′(f (gX ′,X(n))). �

Example 3.1. Let W be the variety of
groups, V the variety of semigroups, X =
{x, y, z}, Y = {y1, y2, y3}, A the group
with presentation 〈x, y, z | xy = zy−1z3x〉,
B the subsemigroup of A generated by
{x, xy, y3z−1}, ψ : T(X) → A the obvious

group representation of A, and φ : T(Y ) →
B the semigroup representations of B given
by φ(y1) = x, φ(y2) = xy, φ(y3) = y3z−1.
We want to solve the Membership Problem
for B in A.
Let Mx = ( 3 0

0 1 ), My = ( 1 1
0 1 ), A′ =

〈Mx,My〉, the subgroup of SL2(Z) gener-
ated by Mx and My, and α the surjective
group homomorphism de�ned by α(x) = Mx

and α(y) = α(z) = My. To verify that α
de�nes a homomorphism we need to check
that MxMy = M3

yMx, which does hold. Let
B′ = α(B) = 〈Mx,MxMy,M

2
y 〉V , that is,

B′ is the semigroup generated by the matri-
ces Mx = ( 3 0

0 1 ), MxMy = ( 3 3
0 1 ) and M2

y =
( 1 2
0 1 ). Let X ′ = {x, y}, ψ′ : T(X ′) → A′

be the group representation of A′ given by
ψ′(x′) = Mx, ψ

′(y′) = My, Y
′ = {y′1, y′2, y′3},

and φ′ : T(Y ′) → B′ the semigroup rep-
resentation of B′ given by φ′(y′1) = Mx,
φ′(y′2) = MxMy, φ

′(y′3) = M2
y .

An easy induction on the length shows
that if τ ′ is an X ′-term of length at most
n, and ψ′(τ ′) = ( a b

c d ), then |a| + |b| ≤ 3n+1.
On the other hand, by induction on length,
if t′ is a Y ′ term of length at least n′ and
φ′(t

′
) = ( a b

c d ), then |a|+ |b| > n′. Therefore,
(φ′)−1ψ′(Tn(X ′)) ⊆ T3n+1(Y ′). This shows
that the �bers of φ′ are �nite. Since the
�bers of φ′ are �nite and the free semigroup
T(Y ′) is laconic, the semigroup B′ is laconic
by Proposition 2.5. Moreover, the function
f(n) = 3n+1 is an upper distortion function
for B′ in A′ with respect to ψ′ and φ′.
By Proposition 3.3 and the decidability of

the Word Problem in one-relator groups [7],
we can explicitly determine a computable up-
per distortion function for B′ in A′ with re-
spect to αψ and αBφ, which we can lift, by
Proposition 3.2, to an upper distortion func-
tion for B in A with respect to ψ and φ.
Thus, by Proposition 3.1, the Membership
Problem for B in A is decidable.
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ãîðíà äèñòîðçèjà íà ëàêîíñêèòå ïîäàëãåáðè è ãè ïðèìåíóâàìå êîí ïðîáëåìîò íà ïðèïàäíîñò.

Êëó÷íè çáîðîâè: ïðîáëåì íà ïðèïàäíîñò, ãîðíà äèñòîðçèjà, ëàêîíñêî ìíîãóîáðàçèå

Áè ñàêàë äà jà èñêîðèñòàì îâàà ïðèëèêà äà jà èñòàêíàì êëó÷íàòà óëîãà øòî jà èìàøå
ïðîôåñîðîò ×óïîíà âî ìîjîò ìàòåìàòè÷êè ðàçâîj. Âî òåê íà ÷åòèðè ãîäèíè, áåâ íåãîâ ñòóäåíò
è àñèñòåíò è, ïî ñðå�êíà îêîëíîñò, ñå çäîáèâ ñî äðàãîöåíàòà ïðèâèëåãèjà äà èìàì ïîñòîjàí
ïðèñòàï äî íåãîâàòà êàíöåëàðèjà, äî ïîëèöèòå ñî êíèãè è, íàjâàæíî, äî íåãîâèòå ìèñëè, è
ñåòî òîà áåçìåðíî ãî âïèâàâ. Míîãó íåøòà áè ìîæåëå äà ñå ñïîìíàò, íî �êå ñå îãðàíè÷àì
ñàìî íà ñëåäíàâà âè»åòà. Áåçìàëêó ïðåä òðèåñåò ãîäèíè, ãî îäðæàâ ñâîåòî ïðâî ïðåäàâà»å
íà ìå�ãóíàðîäíà êîíôåðåíöèjà, âî Ïîòñäàì, Ãåðìàíèjà. Âåäíàø ïî ïðåäàâà»åòî, ó÷åñíèê íà
êîíôåðåíöèjàòà, ïðîôåñîð Êààðëè îä Óíèâåðçèòåòîò âî Òàðòó, ïðèjäå è ìå ïðàøà ½Äàëè ñòå
ñòóäåíò íà ×óïîíà?� Îäãîâîðèâ äåêà ñóì, íà øòî òîj ñàìî ðå÷å ½Ñåêîãàø �êå ãî ïðåïîçíàåòå
ëàâîò ïî òðàãàòà øòî jà îñòàâà.� Íèêîãàø ïîâòîðíî âî êàðèåðàòà íå äîáèâ êîìïëèìåíò øòî
òîëêó ìå èçðàäóâàë. Âî èìåòî íà ñèòå øòî ñ�e óøòå jà ÷óâñòâóâààò è öåíàò òàà òðàãà, áëàãîäàðàì
ïðîôåñîðå ×óïîíà.
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