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This note is a short review of regular and recognizable subsets of monoids. We introduce a new
question about characterizing classes of monoids and show that idempotent monoids can be characterized

by the properties of the languages they recognize.
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INTRODUCTION

It is well known that there is an inti-
mate relationship between regular languages
(as subsets of free monoids) and their syn-
tactic monoids (as transition monoids of
the corresponding minimal deterministic au-
tomata). Many classes of languages can be
characterized by the ideal structure of their
corresponding syntactic monoids [17]. In
particular, classes of regular languages that
are studied in symbolic dynamics and cellular
automata can be characterized through their
transition monoids of the minimal determin-
istic presentation [9, 11]. With this note, we
ask the converse question: can properties of
the languages recognized by classes of finite
monoids describe, or characterize, the class of
monoids? For the simple case of idempotent
monoids we show that such characterization
is possible.

The notions of automata and languages
can be extended to arbitrary monoids. One
can consider M-regular subsets of M where
M is an arbitrary monoid, not necessarily
the free monoid. Similarly, the recognizable
languages can be extended to M-recognizable
subsets. In this case, the M-regular subsets

may strictly contain the M-recognizable sub-
sets and we show why this inclusion is strict.
We end by recalling the long standing open
problem for characterizing the monoids for
which M-recognizable and M-regular sets co-
incide.

PRELIMINARIES

2.1. Automata. A standard background in
automata theory can be found in [8, 20]. A
monoid with identity 1 is denoted with M.
A subset of a monoid M is called an M-
language. The set of all words over a finite al-
phabet A is denoted by A*. With the opera-
tion concatenation A* is the free monoid gen-
erated by A. A language is an A*-language.

Definition 2.1 Let M be a monoid.
An M-finite state automaton (or just M-
automaton) is a tuple M = (M,Q,1,T,E)
where () is a finite set of states, I C () the
set of wnitial states, T' C () the set of termi-
nal states and € C Q x M x @ the set of
transitions.

An M-automaton M is associated with a
finite labeled directed multigraph having ver-
tices (), directed edges £, and three func-
tions, s,t : £ — @ (source and target of
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the edges) and the labeling A : £ — M de-
fined by s(q,a,q') = ¢, t(¢,a,q¢') = ¢ and
(AMq,a,q) = a. A transition sequence or a
path in M is a sequence of edges

p= €€ €

= (q,a1,1)(q1,a2,q2) - - - (qr—1, ar, @)

satisfying s(e; 1) = t(e;) fori =1,... k — 1.
In fact p € £*. The label of p is A(p) =
Aer) - Meg) = ay---ap € M. The source
of p is s(p) = s(e1) = qo and target of p is
t(p) = tlex) = g

A element w € M is accepted by M if there
is a path p such that s(p) € I, t(p) € T and
A(p) = w. In the case of M = A*, w is called
a word. The M-language recognized by M is
L(M) ={w € M|w is accepted by M}. In
particular, 1 € L(M) if and only if INT # 0.

Definition 2.2 An M-language L C M is
M -regularif there exists an M-automaton M
such that L = L(M).

The class of M-regular languages is de-
noted Reg(M). Here we concentrate on de-
terministic M-automata, that is, for every
g € @ and every a € M the set {¢ |
(q,a,q') € £} is either a singleton or empty.
It is well known that the class Reg(M) re-
mains unchanged when we restrict our atten-
tion to deterministic automata. In the deter-
ministic case, if X C M is the set of labels of
the transitions, then X* (as a submonoid of
M) acts on @ by ¢-a = ¢ or just ga = ¢ for
(¢,a,q") € £ and a € X. If there is no tran-
sition starting at ¢ with label a then qa = 0.
One can always add a ‘junk’ state in Q and
set ga = junk whenever qa = (), hence, for
each a € X, its action on () is considered
as a function rather than a partial function.
For w € X*, qw = ¢ if there is a path in M
from ¢ to ¢’ with label w. We usually take
that X* = M, ie., X generates M. The
transition monoid T (M) of M is the set X*
as functions acting on the states of M.

2.2. Monoids. Let L C M and x € M. The
context of x in M with respect to L is
Cr(z) = {(u,v) | u,v,€ M,uzv € L}

We set z ~, y if and only if Cp(x) = Cp(y).
The syntactic semigroup of L is the quotient
M/ ~p, denoted with S(L) with the opera-
tion [z|[y] = [xy]. A subset L of a monoid
M is said to be recognizable if there is a mor-
phism ¢ from M to a finite monoid N such
that L = ¢ 1(P) for some subset P C N.

A monoid N recognizes L if there is a mor-
phism ¢ : M — N and a subset P of N such

that L = ¢~ '(P). So L is recognizable if it
is recognized by a finite monoid. The class
of recognizable subsets of M is denoted by
Rec(M). The following hold [17, 19].

Proposition 2.1

e The syntactic monoid S(L) recognizes L.

o If L € Reg(A*) then it is recognized by
the transition monoid T (M) of the minimal
deterministic M. Moreover, L € Reg(A*) if
and only if L € Rec(A*).

e A monoid M recognizes L C A* if and
only if the syntactic monoid S(L) of L di-
vides M (it is a quotient of a submonoid of

The ideal structure of a monoid can be de-
scribed with the following equivalence rela-
tions which are based on the principal ideals.

Definition 2.3 Let M be a monoid.
Green’s relations R, L,J, H, D on M are de-
fined as (a,b € M):

aRbif aM =bM

alLbif Ma= Mb
aJbif MaM = MbM
aHbifaRband aLb

a Db if there is ¢ € M such that a Re
and c¢Lb

In a finite monoid D = J. In this case the
subgroups of M are the H classes containing
idempotents.

MONOIDS AND LANGUAGES

3.1. Monoid characterizations of classes
of languages. Algebraic characterization of
languages is often used in automata theory,
and some classes of languages show up in
other fields, such as symbolic dynamics [14].
The concept of local languages remains fun-
damental in automata theory as every reg-
ular language is a morphic image of a lo-
cal language (more precisely, strictly locally
testable), and this characterization has been
used to define regular 2-dimensional lan-
guages (sets of rectangular arrays of sym-
bols [7, 12|). A language L C A* is local
if it is a complement of finitely generated
submonoid of A*. In other words, L is lo-
cal if there is a finite set of words F' such
that L = A* \ A*FA*. The set F is called
the set of forbidden words. A word w € A*
is called a constant for the language L C A*
when for all vy, vy, v3,v4 € A* the following
implication holds,

viwvy € L and vawvy € L = vjwuy € L.

Contributions, Sec. Nat. Math. Biotech. Sci., MASA, 41 (2), 141-146 (2020)



Recognizable and Regular Subsets of Monoids

143

A well known characterization of local lan-
guages states: k is the maximal length of the
set of forbidden words if and only if all words
of length > k are constants for L [14, 11].
These words also act as constant functions
(hence the name) in the action of A* on the
minimal deterministic automaton M recog-
nizing the language.

Definition 3.1 A language () # L C A* is:
e factorial if for all z,y,z € A*
xyze L=y €L
e cxtendable if for all x € L
there are i,z € AT such that yxz € L
o transitive for all x,y € L
there is z € A* such that zzy € L

Local, factorial and extendable languages
correspond to factors of subshifts of finite
type, while factorial, extendable and regular
(FER) languages consist of factors of sofic
subshifts. Transitive languages can be as-
sociated with transitive symbolic dynamical
systems [14]. These languages, in particu-
lar factorial, transitive and regular (FTR)
languages can also be studied as factors of
images and traces of cellular automata [2].
Their syntactic monoids can be characterized
as follows. We set 7 : A* — S(L) as the nat-
ural onto morphism defined with z — [z].

Proposition 3.1 [9] L is an FTR language
if and only if S(L) has the following proper-
lies:

(i) S(L) is finite

(ii) S(L) has a 0 such that n~'(S(L) —
o) =1

(i1i) S(L) has a O-minimal right ideal R
(an R-class) such that for every non zero

x € S(L), Rx #0.

In this case, one can define an A*-
automaton such that the states are the R-
classes of the 0-minimal right ideal of S(L)
with transitions defined as [z]a = [za]. This
automaton, in fact, becomes the minimal
transitive representation of the language [9].
Let Z. = {[z]|z is a constant for L}. Ob-
serve that Z. is an ideal for S(L). More-
over, for a local, or an F'TR-language L, the
word ¢ € L is constant if and only if Dy, has
H-trivial subclasses, that is, the correspond-
ing D-classes are group-free. This holds even
for a larger class of languages that are facto-
rial and extendable (not necessarily regular),
such as the Dyck languages. Although their
syntactic monoids are infinite, the classes of
relations D and J coincide [10].

Proposition 3.2 [11, 15| Let L be a lan-
guage and I, = {[z]|x is a constant for
L}. The language L is local if and only if
[1] = {1} and the set of idempotents E =
{e|e?* =e,e # 1,e # 0} is a non-empty sub-
set of the ideal Z..

Note that every finite group can be a syn-
tactic monoid of some language by an appro-
priate definition of an action of the group to
a directed graph.

3.2. Language characterization of
classes of monoids. As computer science,
and in particular, algebraic automata the-
ory concentrates on understanding classes of
languages, there has been virtually no stud-
ies of the converse question. Characterize
classes of monoids according to the classes
of languages that they recognize. In partic-
ular, consider the class C of finite monoids
that belong to an identity defined variety
of monoids, such as the variety defined by
a™y" = (xy)™ (varieties of such groupoids
and other algebraic structures have been
studied by Cupona and his collaborators,
e.g. |3, 4]). Can the properties of the classes
of languages that are recognized by C deter-
mine the monoids in C? One simple case with
a positive answer can be observed with the
following. Recall that idempotent monoids
are monoids whose every element is an idem-
potent.

Proposition 3.3 A finite monoid M is an
idempotent monoid if and only if every lan-
quage L recognized by M satisfies the equiv-
alence

we L+ wtCL

Proof. If M is an idempotent monoid then M
satisfies the equation 22 = z. Let n : A* —
M be a morphism and L recognized through
P C M such that L = n~'(P). Then for
w € L, and n(w) = p € P we have that
pp = n(ww) = n(w™) = p, hence, for all n,
w™ € n~(p), which implies that w™ C L. Of
course, if w™ C L then w € L by definition.

Converse, suppose that every L recognized
by M satisfies the equivalence of the propo-
sition. Consider a surjective morphism 7 :
A* — M. Let p € M and take P to be
the singleton P = {p} and let L = n~!(p).
Suppose w is of minimal length such that
n(w) = p. The equivalence of the proposi-
tion says that w* C L and hence n(w™) € P,
ie. n(w") = p. In particular, for n = 2 we
have n(ww) = pp = p, implying that p must
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be an idempotent. As this is true for every
p € M, M is an idempotent monoid. O

For a finite idempotent monoid and P C
M, let 771 (p)min be the minimal length w €
A* such that n(w) = p. Then whenever we
have py, po, p1p2 € P the language recognized
as n (P) C A* contains the subsemigroup
M (p1)min Y 71 (p2)min)T which is extend-
able and transitive.

As a specific case, consider the idempotent
monoid \73 = {]_, hla h27 hlhg, hghl} Satisfy—
ing h;h;h; = h; for i,j = 1,2. It consists
of a single D-class containing the four non-
identity elements, two R-classes ({h1, hihs},
{hahy, hy}) and similarly two L-classes. If
A = {a,b} the only languages recognized
by J3 are ac, b, aAc, bA°, A‘a, Ab where
e € {x,+} and their pairwise intersections
and unions.

We point out that the above question
(characterizing classes of monoids through
the properties of the languages they recog-
nize) can be considered also for classes that
are not necessarily varieties. The monoid J3
is a special case of the Jones monoids 7, gen-
erated by h;, : = 1,...,n — 1, with relations
and (C) h;h; = hjh; for i j| > 2. Unfor-
tunately, except for n = 3, the Jones monoids
are not idempotent monoids, but they are all
finite monoids |1, 21]. Given the relations
(A)—(C), what are the properties of the lan-
guages recognized by 7,7 Can those prop-

erties be listed such that monoids 7, can be
characterized?

RECOGNIZABLE VS REGULAR

Kleene’s theorem says that Reg(A*)
coincides with the smallest class of languages
that contain all finite languages and is closed
under union, product and *-operation (L* =

<oL" where L° = {1}) [13]. Similarly, the
smallest class of subsets of M that contains
all finite subsets of M, is closed under union,
product and *-operation is the set of ratio-
nal M-languages denoted Rat(M). It can be
observed that Rat(M) = Reg(M) for every
M 5]

Consider A = {a,b} and M = A* x A*. A
two state automaton (states g, g2 with tran-
sitions ¢i(a,1) = g2 and ¢2(1,b) = ¢, hav-
ing initial and terminal state ¢;) recognizes
the M-language Ly, = (a,b)* = {(a™,b") |
n > 0}. One can add a junk state g3 sending

all other missing transitions with generators
(a,1),(b,1),(1,a),(1,b) to this state. Hence
(a,b)* € Reg(M). Let N be a finite monoid
and a morphism n: M — N. Let n(a,1) =z
and n(1,b) = y. Because (a,1)(1,b) =
(1,b)(a,1) = (a,b) we must have zy = yx in
N. If P C N issuch that n~!(P) = Ly, then
P must contain the submonoid of N gener-
ated by xy. However, due to the commu-
tativity, (zy)™ = x"y". Because N is finite,
there are n, k such that 2"*t* = 2" and there-
fore n(a™™*,b") = a"try" = 2"y" € P. But
(a™* ") & Ly Thus Ly € Rec(M). Ob-
serve that there is no morphism from M to
the transition monoid of this M-automaton
since the action of (a,1)(1,b) on the states
q1,Q2,q3 is not the same as the action of
(1,b)(a, 1), although they represent the same
element in M.

By Proposition 2.1 we have that
Reg(A*) = Rec(A*). The equivalence of
two automata, or the emptiness problem for
A*-automata are easily decidable. Rec(A*)
is closed under intersection, but in general
Rec(M) is not necessarily so, and that poses
the main problem in understanding Rec(M).
The simple example above is a base of several
undecidability observations.

Proposition 4.1

(a) There is a monoid M such that it is
undecidable whether Ly Ly = () for Ly, Ly €
Reg(M) [18].

(b) There is a monoid M such that it is
undecidable whether two M -automata recog-
nize the same language [6].

In general, for a finitely generated monoid
M, Rec(M) C Reg(M) [16], but, as we saw
above, the other inclusion does not neces-
sarily hold. If M is not finitely generated,
then even this inclusion does not hold. Take
M = Z with the multiplication of numbers
as the operation. One can map Z into a three
element monoid {0, 1,2} with 0 being a zero
element, 1 being an identity, and 2 -2 = 0.
The map sends 1, —1 +— 1, prime — 2, and
non-prime — 0. The inverse image of {2} is
the set of primes (hence the set is recogniz-
able), but it cannot be a regular set since no
automaton can recognize this set.

When M is a group we have the following:

Proposition 4.2. [19] Let G be a finitely
generated group and H < G. Then
(a) H € Reg(G) iff H is finitely generated
(b) H € Rec(G) iff H has finite inde.
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Problem: Characterize Kleene’s monoids,
i.e., monoids with Rec(M) = Reg(M).
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ITPEIIO3HATJINBUA N PEI'YJIAPHU TIO/IMHOXKECTBA O/ MOHOUJIN
Haramma Jonocka

Opnenenne 3a Maremaruka u Crarucruka, Yuausepsurer Ha Jyxuaa Ouopujia,

Tamma Paopuga, 33620 CAJL
Bo cnomen wa npogdecop Topsu Yynowna co daabora baazodaprocm

OBoj 3ammc e Kparka peBu3urja HA PEryJapHU U MPEMO3HATINBY MOIMHOKECTBA, O MOHOU 1. BoBemy-
BaMe HOBO Ipalllaibe 38 KapaKTepu3allnja Ha KJIACH MOHOUJIU U MOKAXKyBaMe JleKa KIacaTa Ha UAEHIOTEHTHI
MOHOUJIN MOZKE JIa ce KapaKTepu3upa MpeKy CBOjCTBATA HA ja3WITUTE MPEMO3HAEHU CO OBAa KJIaca.

Kuyuysu 360poBu: MOHOWIN, ABTOMATH, PETYJIAPHU ja3WIIM, MPEMO3HATINBA jA3UIIN

WNwmas npusuiernja npodecop UymoHa ga MU MOMOTHE Ja TO 3aII0YHAM MOETO MPOMECHOHA-
HO IaTelecTBUe U MY JIoJKaM rojema Oiarogapaoct. Mojara aumsiomcka pabora Gerie Ha Tema
KoMbWHATOpHA Teopuja Ha rpynu u mpodecop Uymona Hermre moj mentop. Ilomornma 3a Bpeme Ha
MOUTE JOKTOPCKU CTYAWW Ce HABPATUB HA OBaa TeMa, & U MOjaTa JTOKTOPCKA JUCEPTAIN]ja 3aBPIITH
co mobap jes noceereH Ha nosyrpynu. Kako acucrent Ha Uucruryror mo Maremaruka 3a jaBe-Tpu
ronuawu, mpodecop Uynona mu ja npenopada kaurata Teopuja wa Asromaru ox Apro Casoma [20],
u Taa obJIACT 3aBpINKM KaKO IJIaBHA TeMa Ha Mojara jucepranuja u ucrpaxysawe ([9, 10, 11]). A
moBeKe 071 cé Hea MOMEHTHUTE Ha JIPYKEFHE IIITO TOj TH KPEUPAIIe U IITO He TpaBea OJMCKN CO HETro,
a u 6JincKu Mery Hac Kako JApyrapu MaTeMaTHYapH.
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