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This note is a short review of regular and recognizable subsets of monoids. We introduce a new
question about characterizing classes of monoids and show that idempotent monoids can be characterized
by the properties of the languages they recognize.
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INTRODUCTION

It is well known that there is an inti-
mate relationship between regular languages
(as subsets of free monoids) and their syn-
tactic monoids (as transition monoids of
the corresponding minimal deterministic au-
tomata). Many classes of languages can be
characterized by the ideal structure of their
corresponding syntactic monoids [17]. In
particular, classes of regular languages that
are studied in symbolic dynamics and cellular
automata can be characterized through their
transition monoids of the minimal determin-
istic presentation [9, 11]. With this note, we
ask the converse question: can properties of
the languages recognized by classes of �nite
monoids describe, or characterize, the class of
monoids? For the simple case of idempotent
monoids we show that such characterization
is possible.
The notions of automata and languages

can be extended to arbitrary monoids. One
can consider M -regular subsets of M where
M is an arbitrary monoid, not necessarily
the free monoid. Similarly, the recognizable
languages can be extended to M-recognizable
subsets. In this case, the M -regular subsets

may strictly contain theM -recognizable sub-
sets and we show why this inclusion is strict.
We end by recalling the long standing open
problem for characterizing the monoids for
whichM -recognizable andM -regular sets co-
incide.

PRELIMINARIES

2.1. Automata. A standard background in
automata theory can be found in [8, 20]. A
monoid with identity 1 is denoted with M .
A subset of a monoid M is called an M-
language. The set of all words over a �nite al-
phabet A is denoted by A∗. With the opera-
tion concatenation A∗ is the free monoid gen-
erated by A. A language is an A∗-language.

Let M be a monoid.
An M -�nite state automaton (or just M-
automaton) is a tuple M = (M,Q, I, T, E)
where Q is a �nite set of states, I ⊆ Q the
set of initial states, T ⊆ Q the set of termi-
nal states and E ⊆ Q × M × Q the set of
transitions.

An M -automatonM is associated with a
�nite labeled directed multigraph having ver-
tices Q, directed edges E , and three func-
tions, s, t : E → Q (source and target of
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the edges) and the labeling λ : E → M de-
�ned by s(q, a, q′) = q, t(q, a, q′) = q′ and
(λ(q, a, q′) = a. A transition sequence or a
path inM is a sequence of edges
p = e1e2 · · · ek
= (q0, a1, q1)(q1, a2, q2) · · · (qk−1, ak, qk)

satisfying s(ei+1) = t(ei) for i = 1, . . . , k− 1.
In fact p ∈ E∗. The label of p is λ(p) =
λ(e1) · · ·λ(ek) = a1 · · · ak ∈ M . The source
of p is s(p) = s(e1) = q0 and target of p is
t(p) = t(ek) = qk.
A element w ∈M is accepted byM if there

is a path p such that s(p) ∈ I, t(p) ∈ T and
λ(p) = w. In the case of M = A∗, w is called
a word. The M -language recognized byM is
L(M) = {w ∈ M |w is accepted byM}. In
particular, 1 ∈ L(M) if and only if I∩T 6= ∅.

An M -language L ⊆ M is
M-regular if there exists anM -automatonM
such that L = L(M).

The class of M -regular languages is de-
noted Reg(M). Here we concentrate on de-
terministic M -automata, that is, for every
q ∈ Q and every a ∈ M the set {q′ |
(q, a, q′) ∈ E} is either a singleton or empty.
It is well known that the class Reg(M) re-
mains unchanged when we restrict our atten-
tion to deterministic automata. In the deter-
ministic case, if X ⊆M is the set of labels of
the transitions, then X∗ (as a submonoid of
M) acts on Q by q · a = q′ or just qa = q′ for
(q, a, q′) ∈ E and a ∈ X. If there is no tran-
sition starting at q with label a then qa = ∅.
One can always add a `junk' state in Q and
set qa = junk whenever qa = ∅, hence, for
each a ∈ X, its action on Q is considered
as a function rather than a partial function.
For w ∈ X∗, qw = q′ if there is a path inM
from q to q′ with label w. We usually take
that X∗ = M , i.e., X generates M . The
transition monoid T (M) ofM is the set X∗

as functions acting on the states ofM.

2.2. Monoids. Let L ⊆M and x ∈M . The
context of x in M with respect to L is

CL(x) = {(u, v) |u, v,∈M,uxv ∈ L}
We set x ∼L y if and only if CL(x) = CL(y).
The syntactic semigroup of L is the quotient
M/ ∼L denoted with S(L) with the opera-
tion [x][y] = [xy]. A subset L of a monoid
M is said to be recognizable if there is a mor-
phism ϕ from M to a �nite monoid N such
that L = ϕ−1(P ) for some subset P ⊆ N .
A monoid N recognizes L if there is a mor-
phism ϕ :M → N and a subset P of N such

that L = ϕ−1(P ). So L is recognizable if it
is recognized by a �nite monoid. The class
of recognizable subsets of M is denoted by
Rec(M). The following hold [17, 19].

• The syntactic monoid S(L) recognizes L.
• If L ∈ Reg(A∗) then it is recognized by

the transition monoid T (M) of the minimal
deterministicM. Moreover, L ∈ Reg(A∗) if
and only if L ∈ Rec(A∗).
• A monoid M recognizes L ⊆ A∗ if and

only if the syntactic monoid S(L) of L di-
vides M (it is a quotient of a submonoid of
M).

The ideal structure of a monoid can be de-
scribed with the following equivalence rela-
tions which are based on the principal ideals.

Let M be a monoid.
Green's relations R,L, J,H,D on M are de-
�ned as (a, b ∈M):
• aR b if aM = bM
• aL b if Ma =Mb
• a J b if MaM =MbM
• aH b if aR b and aL b
• aD b if there is c ∈M such that aR c
and c L b

In a �nite monoid D = J . In this case the
subgroups of M are the H classes containing
idempotents.

MONOIDS AND LANGUAGES

3.1. Monoid characterizations of classes
of languages. Algebraic characterization of
languages is often used in automata theory,
and some classes of languages show up in
other �elds, such as symbolic dynamics [14].
The concept of local languages remains fun-
damental in automata theory as every reg-
ular language is a morphic image of a lo-
cal language (more precisely, strictly locally
testable), and this characterization has been
used to de�ne regular 2-dimensional lan-
guages (sets of rectangular arrays of sym-
bols [7, 12]). A language L ⊆ A∗ is local
if it is a complement of �nitely generated
submonoid of A∗. In other words, L is lo-
cal if there is a �nite set of words F such
that L = A∗ \ A∗FA∗. The set F is called
the set of forbidden words. A word w ∈ A∗
is called a constant for the language L ⊆ A∗

when for all v1, v2, v3, v4 ∈ A∗ the following
implication holds,
v1wv2 ∈ L and v3wv4 ∈ L⇒ v1wv4 ∈ L.
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A well known characterization of local lan-
guages states: k is the maximal length of the
set of forbidden words if and only if all words
of length ≥ k are constants for L [14, 11].
These words also act as constant functions
(hence the name) in the action of A∗ on the
minimal deterministic automaton M recog-
nizing the language.

A language ∅ 6= L ⊆ A∗ is:
• factorial if for all x, y, z ∈ A∗

xyz ∈ L⇒ y ∈ L
• extendable if for all x ∈ L

there are y, z ∈ A+ such that yxz ∈ L
• transitive for all x, y ∈ L

there is z ∈ A∗ such that xzy ∈ L
Local, factorial and extendable languages

correspond to factors of subshifts of �nite
type, while factorial, extendable and regular
(FER) languages consist of factors of so�c
subshifts. Transitive languages can be as-
sociated with transitive symbolic dynamical
systems [14]. These languages, in particu-
lar factorial, transitive and regular (FTR)
languages can also be studied as factors of
images and traces of cellular automata [2].
Their syntactic monoids can be characterized
as follows. We set η : A∗ → S(L) as the nat-
ural onto morphism de�ned with x 7→ [x].

[9] L is an FTR language
if and only if S(L) has the following proper-
ties:

(i) S(L) is �nite
(ii) S(L) has a 0 such that η−1(S(L) −
{0}) = L

(iii) S(L) has a 0-minimal right ideal R
(an R-class) such that for every non zero
x ∈ S(L), Rx 6= 0.

In this case, one can de�ne an A∗-
automaton such that the states are the R-
classes of the 0-minimal right ideal of S(L)
with transitions de�ned as [x]a = [xa]. This
automaton, in fact, becomes the minimal
transitive representation of the language [9].
Let Ic = {[x] |x is a constant for L}. Ob-
serve that Ic is an ideal for S(L). More-
over, for a local, or an FTR-language L, the
word c ∈ L is constant if and only if D[c] has
H-trivial subclasses, that is, the correspond-
ing D-classes are group-free. This holds even
for a larger class of languages that are facto-
rial and extendable (not necessarily regular),
such as the Dyck languages. Although their
syntactic monoids are in�nite, the classes of
relations D and J coincide [10].

[11, 15] Let L be a lan-
guage and Ic = {[x] |x is a constant for
L}. The language L is local if and only if
[1] = {1} and the set of idempotents E =
{e | e2 = e, e 6= 1, e 6= 0} is a non-empty sub-
set of the ideal Ic.
Note that every �nite group can be a syn-

tactic monoid of some language by an appro-
priate de�nition of an action of the group to
a directed graph.

3.2. Language characterization of
classes of monoids. As computer science,
and in particular, algebraic automata the-
ory concentrates on understanding classes of
languages, there has been virtually no stud-
ies of the converse question. Characterize
classes of monoids according to the classes
of languages that they recognize. In partic-
ular, consider the class C of �nite monoids
that belong to an identity de�ned variety
of monoids, such as the variety de�ned by
xnyn = (xy)n (varieties of such groupoids
and other algebraic structures have been
studied by �Cupona and his collaborators,
e.g. [3, 4]). Can the properties of the classes
of languages that are recognized by C deter-
mine the monoids in C? One simple case with
a positive answer can be observed with the
following. Recall that idempotent monoids
are monoids whose every element is an idem-
potent.

A �nite monoid M is an
idempotent monoid if and only if every lan-
guage L recognized by M satis�es the equiv-
alence

w ∈ L⇐⇒ w+ ⊆ L

Proof. IfM is an idempotent monoid thenM
satis�es the equation x2 = x. Let η : A∗ →
M be a morphism and L recognized through
P ⊆ M such that L = η−1(P ). Then for
w ∈ L, and η(w) = p ∈ P we have that
pp = η(ww) = η(wn) = p, hence, for all n,
wn ∈ η−1(p), which implies that w+ ⊆ L. Of
course, if w+ ⊆ L then w ∈ L by de�nition.
Converse, suppose that every L recognized

by M satis�es the equivalence of the propo-
sition. Consider a surjective morphism η :
A∗ → M . Let p ∈ M and take P to be
the singleton P = {p} and let L = η−1(p).
Suppose w is of minimal length such that
η(w) = p. The equivalence of the proposi-
tion says that w+ ⊆ L and hence η(wn) ∈ P ,
i.e. η(wn) = p. In particular, for n = 2 we
have η(ww) = pp = p, implying that p must
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be an idempotent. As this is true for every
p ∈M , M is an idempotent monoid. �
For a �nite idempotent monoid and P ⊆

M, let η−1(p)min be the minimal length w ∈
A∗ such that η(w) = p. Then whenever we
have p1, p2, p1p2 ∈ P the language recognized
as η

−1(P ) ⊆ A∗ contains the subsemigroup
(η−1(p1)min ∪ η−1(p2)min)

+ which is extend-
able and transitive.
As a speci�c case, consider the idempotent

monoid J3 = {1, h1, h2, h1h2, h2h1} satisfy-
ing hihjhi = hi for i, j = 1, 2. It consists
of a single D-class containing the four non-
identity elements, two R-classes ({h1, h1h2},
{h2h1, h2}) and similarly two L-classes. If
A = {a, b} the only languages recognized
by J3 are aε, bε, aAε, bAε, Aεa, Aεb where
ε ∈ {∗,+} and their pairwise intersections
and unions.
We point out that the above question

(characterizing classes of monoids through
the properties of the languages they recog-
nize) can be considered also for classes that
are not necessarily varieties. The monoid J3
is a special case of the Jones monoids Jn gen-
erated by hi, i = 1, . . . , n − 1, with relations
(A) hihjhi = hi for |i−j| = 1, (B) hihi = hi
and (C) hihj = hjhi for |i− j| ≥ 2. Unfor-
tunately, except for n = 3, the Jones monoids
are not idempotent monoids, but they are all
�nite monoids [1, 21]. Given the relations
(A)�(C), what are the properties of the lan-
guages recognized by Jn? Can those prop-
erties be listed such that monoids Jn can be
characterized?

RECOGNIZABLE VS REGULAR

Kleene's theorem says that Reg(A∗)
coincides with the smallest class of languages
that contain all �nite languages and is closed
under union, product and ∗-operation (L∗ =
∪∞i=0L

i where L0 = {1}) [13]. Similarly, the
smallest class of subsets of M that contains
all �nite subsets ofM , is closed under union,
product and ∗-operation is the set of ratio-
nalM -languages denoted Rat(M). It can be
observed that Rat(M) = Reg(M) for every
M [5].
Consider A = {a, b} and M = A∗ ×A∗. A

two state automaton (states q1, q2 with tran-
sitions q1(a, 1) = q2 and q2(1, b) = q1, hav-
ing initial and terminal state q1) recognizes
the M -language LM = (a, b)∗ = {(an, bn) |
n ≥ 0}. One can add a junk state q3 sending

all other missing transitions with generators
(a, 1), (b, 1), (1, a), (1, b) to this state. Hence
(a, b)∗ ∈ Reg(M). Let N be a �nite monoid
and a morphism η :M → N . Let η(a, 1) = x
and η(1, b) = y. Because (a, 1)(1, b) =
(1, b)(a, 1) = (a, b) we must have xy = yx in
N . If P ⊆ N is such that η−1(P ) = LM , then
P must contain the submonoid of N gener-
ated by xy. However, due to the commu-
tativity, (xy)n = xnyn. Because N is �nite,
there are n, k such that xn+k = xn and there-
fore η(an+k, bn) = xn+kyn = xnyn ∈ P . But
(an+k, bn) 6∈ LM . Thus LM 6∈ Rec(M). Ob-
serve that there is no morphism from M to
the transition monoid of this M -automaton
since the action of (a, 1)(1, b) on the states
q1, q2, q3 is not the same as the action of
(1, b)(a, 1), although they represent the same
element in M .
By Proposition 2.1 we have that
Reg(A∗) = Rec(A∗). The equivalence of
two automata, or the emptiness problem for
A∗-automata are easily decidable. Rec(A∗)
is closed under intersection, but in general
Rec(M) is not necessarily so, and that poses
the main problem in understanding Rec(M).
The simple example above is a base of several
undecidability observations.

(a) There is a monoid M such that it is
undecidable whether L1∩L2 = ∅ for L1, L2 ∈
Reg(M) [18].

(b) There is a monoid M such that it is
undecidable whether two M-automata recog-
nize the same language [6].

In general, for a �nitely generated monoid
M , Rec(M) ⊆ Reg(M) [16], but, as we saw
above, the other inclusion does not neces-
sarily hold. If M is not �nitely generated,
then even this inclusion does not hold. Take
M = Z with the multiplication of numbers
as the operation. One can map Z into a three
element monoid {0, 1, 2} with 0 being a zero
element, 1 being an identity, and 2 · 2 = 0.
The map sends 1,−1 7→ 1, prime 7→ 2, and
non-prime 7→ 0. The inverse image of {2} is
the set of primes (hence the set is recogniz-
able), but it cannot be a regular set since no
automaton can recognize this set.
When M is a group we have the following:

Proposition 4.2. [19] Let G be a �nitely
generated group and H ≤ G. Then

(a) H ∈ Reg(G) i� H is �nitely generated
(b) H ∈ Rec(G) i� H has �nite index.

Contributions, Sec. Nat. Math. Biotech. Sci., MASA, 41 (2), 141�146 (2020)
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Problem: Characterize Kleene's monoids,
i.e., monoids with Rec(M) = Reg(M).
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ÏÐÅÏÎÇÍÀÒËÈÂÈ È ÐÅÃÓËÀÐÍÈ ÏÎÄÌÍÎÆÅÑÒÂÀ ÎÄ ÌÎÍÎÈÄÈ

Íàòàøà Jîíîñêà

Îääåëåíèå çà Ìàòåìàòèêà è Ñòàòèñòèêà, Óíèâåðçèòåò íà Jóæíà Ôëîðèäà,
Òàìïà Ôëîðèäà, 33620 ÑÀÄ

Âî ñïîìåí íà ïðîôåñîð �Ãîð�ãè ×óïîíà ñî äëàáîêà áëàãîäàðíîñò

Îâîj çàïèñ å êðàòêà ðåâèçèjà íà ðåãóëàðíè è ïðåïîçíàòëèâè ïîäìíîæåñòâà îä ìîíîèäè. Âîâåäó-
âàìå íîâî ïðàøà»å çà êàðàêòåðèçàöèjà íà êëàñè ìîíîèäè è ïîêàæóâàìå äåêà êëàñàòà íà èäåíïîòåíòíè
ìîíîèäè ìîæå äà ñå êàðàêòåðèçèðà ïðåêó ñâîjñòâàòà íà jàçèöèòå ïðåïîçíàåíè ñî îâàà êëàñà.

Êëó÷íè çáîðîâè: ìîíîèäè, àâòîìàòè, ðåãóëàðíè jàçèöè, ïðåïîçíàòëèâè jàçèöè

Èìàâ ïðèâèëåãèjà ïðîôåñîð ×óïîíà äà ìè ïîìîãíå äà ãî çàïî÷íàì ìîåòî ïðîôåñèîíàë-
íî ïàòåøåñòâèå è ìó äîëæàì ãîëåìà áëàãîäàðíîñò. Ìîjàòà äèïëîìñêà ðàáîòà áåøå íà òåìà
êîìáèíàòîðíà òåîðèjà íà ãðóïè è ïðîôåñîð ×óïîíà áåøå ìîj ìåíòîð. Ïîäîöíà çà âðåìå íà
ìîèòå äîêòîðñêè ñòóäèè ñå íàâðàòèâ íà îâàà òåìà, à è ìîjàòà äîêòîðñêà äèñåðòàöèjà çàâðøè
ñî äîáàð äåë ïîñâåòåí íà ïîëóãðóïè. Êàêî àñèñòåíò íà Èíñòèòóòîò ïî Ìàòåìàòèêà çà äâå-òðè
ãîäèíè, ïðîôåñîð ×óïîíà ìè jà ïðåïîðà÷à êíèãàòà Òåîðèjà íà Àâòîìàòè îä Àðòî Ñàëîìà [20],
è òàà îáëàñò çàâðøè êàêî ãëàâíà òåìà íà ìîjàòà äèñåðòàöèjà è èñòðàæóâà»å ([9, 10, 11]). À
ïîâå�êå îä c�e áåà ìîìåíòèòå íà äðóæå»å øòî òîj ãè êðåèðàøå è øòî íå ïðàâåà áëèñêè ñî íåãî,
à è áëèñêè ìå�ãó íàñ êàêî äðóãàðè ìàòåìàòè÷àðè.
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